Journal of Cerebral Blood Flow & Metabolism
Latest Publications


TOTAL DOCUMENTS

7972
(FIVE YEARS 554)

H-INDEX

215
(FIVE YEARS 9)

Published By Sage Publications

1559-7016, 0271-678x

2022 ◽  
pp. 0271678X2210746
Author(s):  
Ho-Ching (Shawn) Yang ◽  
Ben Inglis ◽  
Thomas M Talavage ◽  
Vidhya Vijayakrishnan Nair ◽  
Jinxia (Fiona) Yao ◽  
...  

It is commonly believed that cerebrospinal fluid (CSF) movement is facilitated by blood vessel wall movements (i.e., hemodynamic oscillations) in the brain. A coherent pattern of low frequency hemodynamic oscillations and CSF movement was recently found during non-rapid eye movement (NREM) sleep via functional MRI. This finding raises other fundamental questions: 1) the explanation of coupling between hemodynamic oscillations and CSF movement from fMRI signals; 2) the existence of the coupling during wakefulness; 3) the direction of CSF movement. In this resting state fMRI study, we proposed a mechanical model to explain the coupling between hemodynamics and CSF movement through the lens of fMRI. Time delays between CSF movement and global hemodynamics were calculated. The observed delays between hemodynamics and CSF movement match those predicted by the model. Moreover, by conducting separate fMRI scans of the brain and neck, we confirmed the low frequency CSF movement at the fourth ventricle is bidirectional. Our finding also demonstrates that CSF movement is facilitated by changes in cerebral blood volume mainly in the low frequency range, even when the individual is awake.


2022 ◽  
pp. 0271678X2110690
Author(s):  
Charles E Seaks ◽  
Erica M Weekman ◽  
Tiffany L Sudduth ◽  
Kevin Xie ◽  
Brandi Wasek ◽  
...  

Vascular contributions to cognitive impairment and dementia (VCID) are the second leading cause of dementia behind Alzheimer’s disease. Apolipoprotein E (ApoE) is a lipid transporting lipoprotein found within the brain and periphery. The APOE ε4 allele is the strongest genetic risk factor for late onset Alzheimer’s disease and is a risk factor for VCID. Our lab has previously utilized a dietary model of hyperhomocysteinemia (HHcy) to induce VCID pathology and cognitive deficits in mice. This diet induces perivascular inflammation through cumulative oxidative damage leading to glial mediated inflammation and blood brain barrier breakdown. Here, we examine the impact of ApoE ε4 compared to ε3 alleles on the progression of VCID pathology and inflammation in our dietary model of HHcy. We report a significant resistance to HHcy induction in ε4 mice, accompanied by a number of related differences related to homocysteine (Hcy) metabolism and methylation cycle, or 1-C, metabolites. There were also significant differences in inflammatory profiles between ε3 and ε4 mice, as well as significant reduction in Serpina3n, a serine protease inhibitor associated with ApoE ε4, expression in ε4 HHcy mice relative to ε4 controls. Finally, we find evidence of pervasive sex differences within both genotypes in response to HHcy induction.


2022 ◽  
pp. 0271678X2210742
Author(s):  
Xue-Qing Zhang ◽  
Yu-Xiang Yang ◽  
Can Zhang ◽  
Xin-Yi Leng ◽  
Shi-Dong Chen ◽  
...  

The exposome characterizes all environmental exposures and their impact on a disease. To determine the causally-associated components of the exposome for cerebral small vessel disease (CSVD), we performed mendelian randomization analysis of 5365 exposures on six clinical and subclinical CSVD measures. We found statistically significant evidence (FDR-corrected P < 0.05) that hypertension, high cholesterol, longer television-watching time, lower educational qualifications, younger age of first sexual intercourse, smoking, reduced pulmonary function, higher subjective overall health rating, and frequent tiredness were associated with increased risk of intracerebral hemorrhage or small vessel stroke. Adiposity, diabetes, frequent alcoholic drinks, higher white blood cell count and neutrophil count were significantly associated with higher risk of non-lobar hemorrhage or small vessel stroke, but not lobar hemorrhage. Hypertension, higher arm or leg fat-free mass and higher sitting height were significantly associated with higher white matter hyperintensities. The results were robust to sensitivity analyses and showed no evidence of horizontal pleiotropy. We also identified 41 exposures suggestively associated (uncorrected P < 0.05) with multiple CSVD measures as the “the CSVD exposome”. This exposome-wide association study provides insight into CSVD development and prevention.


2022 ◽  
pp. 0271678X2110710
Author(s):  
Pei-Hsin Wu ◽  
Ana E Rodríguez-Soto ◽  
Andrew Wiemken ◽  
Erin K Englund ◽  
Zachary B Rodgers ◽  
...  

Patients with obstructive sleep apnea (OSA) are at elevated risk of developing systemic vascular disease and cognitive dysfunction. Here, cerebral oxygen metabolism was assessed in patients with OSA by means of a magnetic resonance-based method involving simultaneous measurements of cerebral blood flow rate and venous oxygen saturation in the superior sagittal sinus for a period of 10 minutes at an effective temporal resolution of 1.3 seconds before, during, and after repeated 24-second breath-holds mimicking spontaneous apneas, yielding, along with pulse oximetry-derived arterial saturation, whole-brain CMRO2 via Fick’s Principle. Enrolled subjects were classified based on their apnea-hypopnea indices into OSA (N = 31) and non-sleep apnea reference subjects (NSA = 21), and further compared with young healthy subjects (YH, N = 10). OSA and NSA subjects were matched for age and body mass index. CMRO2 was lower in OSA than in the YH group during normal breathing (105.6 ± 14.1 versus 123.7 ± 22.8 μmol O2/min/100g, P = 0.01). Further, the fractional change in CMRO2 in response to a breath-hold challenge was larger in OSA than in the YH group (15.2 ± 9.2 versus 8.5 ± 3.4%, P = 0.04). However, there was no significant difference in CMRO2 between OSA and NSA subjects. The data suggest altered brain oxygen metabolism in OSA and possibly in NSA as well.


2022 ◽  
pp. 0271678X2110643
Author(s):  
Douglas L Rothman ◽  
Gerald A Dienel ◽  
Kevin L Behar ◽  
Fahmeed Hyder ◽  
Mauro DiNuzzo ◽  
...  

Over the last two decades, it has been established that glucose metabolic fluxes in neurons and astrocytes are proportional to the rates of the glutamate/GABA-glutamine neurotransmitter cycles in close to 1:1 stoichiometries across a wide range of functional energy demands. However, there is presently no mechanistic explanation for these relationships. We present here a theoretical meta-analysis that tests whether the brain’s unique compartmentation of glycogen metabolism in the astrocyte and the requirement for neuronal glucose homeostasis lead to the observed stoichiometries. We found that blood-brain barrier glucose transport can be limiting during activation and that the energy demand could only be met if glycogenolysis supports neuronal glucose metabolism by replacing the glucose consumed by astrocytes, a mechanism we call Glucose Sparing by Glycogenolysis (GSG). The predictions of the GSG model are in excellent agreement with a wide range of experimental results from rats, mice, tree shrews, and humans, which were previously unexplained. Glycogenolysis and glucose sparing dictate the energy available to support neuronal activity, thus playing a fundamental role in brain function in health and disease.


2022 ◽  
pp. 0271678X2110723
Author(s):  
Hanne Stotesbury ◽  
Patrick W Hales ◽  
Melanie Koelbel ◽  
Anna M Hood ◽  
Jamie M Kawadler ◽  
...  

Prior studies have described high venous signal qualitatively using arterial spin labelling (ASL) in patients with sickle cell anemia (SCA), consistent with arteriovenous shunting. We aimed to quantify the effect and explored cross-sectional associations with arterial oxygen content (CaO2), disease-modifying treatments, silent cerebral infarction (SCI), and cognitive performance. 94 patients with SCA and 42 controls underwent cognitive assessment and MRI with single- and multi- inflow time (TI) ASL sequences. Cerebral blood flow (CBF) and bolus arrival time (BAT) were examined across gray and white matter and high-signal regions of the sagittal sinus. Across gray and white matter, increases in CBF and reductions in BAT were observed in association with reduced CaO2 in patients, irrespective of sequence. Across high-signal sagittal sinus regions, CBF was also increased in association with reduced CaO2 using both sequences. However, BAT was increased rather than reduced in patients across these regions, with no association with CaO2. Using the multiTI sequence in patients, increases in CBF across white matter and high-signal sagittal sinus regions were associated with poorer cognitive performance. These novel findings highlight the utility of multiTI ASL in illuminating, and identifying objectively quantifiable and functionally significant markers of, regional hemodynamic stress in patients with SCA.


2022 ◽  
pp. 0271678X2110699
Author(s):  
Pavel Yanev ◽  
Geralda AF van Tilborg ◽  
Annette van der Toorn ◽  
Xiangmei Kong ◽  
Ann M Stowe ◽  
...  

Injectable hydrogels can generate and support pro-repair environments in injured tissue. Here we used a slow-releasing drug carrying in situ-forming hydrogel to promote post-stroke recovery in a rat model. Release kinetics were measured in vitro and in vivo with MRI, using gadolinium-labeled albumin (Galbumin), which demonstrated prolonged release over multiple weeks. Subsequently, this hydrogel was used for long-term delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) (Gel VEGF + Ang1, n = 14), in a photothrombotically induced cortical stroke lesion in rats. Control stroke animals were intralesionally injected with saline (Saline, n = 10), non-loaded gel (Gel, n = 10), or a single bolus of VEGF + Ang1 in saline (Saline VEGF + Ang1, n = 10). MRI was executed to guide hydrogel injection. Functional recovery was assessed with sensorimotor function tests, while tissue status and vascularization were monitored by serial in vivo MRI. Significant recovery from sensorimotor deficits from day 28 onwards was only measured in the Gel VEGF + Ang1 group. This was accompanied by significantly increased vascularization in the perilesional cortex. Histology confirmed (re)vascularization and neuronal sparing in perilesional areas. In conclusion, intralesional injection of in situ-forming hydrogel loaded with pro-angiogenic factors can support prolonged brain tissue regeneration and promote functional recovery in the chronic phase post-stroke.


2021 ◽  
pp. 0271678X2110685
Author(s):  
Stephanie K Bonney ◽  
Liam T Sullivan ◽  
Timothy J Cherry ◽  
Richard Daneman ◽  
Andy Y Shih

Perivascular fibroblasts (PVFs) are recognized for their pro-fibrotic role in many central nervous system disorders. Like mural cells, PVFs surround blood vessels and express Pdgfrβ. However, these shared attributes hinder the ability to distinguish PVFs from mural cells. We used in vivo two-photon imaging and transgenic mice with PVF-targeting promoters (Col1a1 or Col1a2) to compare the structure and distribution of PVFs and mural cells in cerebral cortex of healthy, adult mice. We show that PVFs localize to all cortical penetrating arterioles and their offshoots (arteriole-capillary transition zone), as well as the main trunk of only larger ascending venules. However, the capillary zone is devoid of PVF coverage. PVFs display short-range mobility along the vessel wall and exhibit distinct structural features (flattened somata and thin ruffled processes) not seen with smooth muscle cells or pericytes. These findings clarify that PVFs and mural cells are distinct cell types coexisting in a similar perivascular niche.


2021 ◽  
pp. 0271678X2110692
Author(s):  
Anna Dewenter ◽  
Benno Gesierich ◽  
Annemieke ter Telgte ◽  
Kim Wiegertjes ◽  
Mengfei Cai ◽  
...  

Cerebral small vessel disease (SVD) is considered a disconnection syndrome, which can be quantified using structural brain network analysis obtained from diffusion MRI. Network analysis is a demanding analysis approach and the added benefit over simpler diffusion MRI analysis is largely unexplored in SVD. In this pre-registered study, we assessed the clinical and technical validity of network analysis in two non-overlapping samples of SVD patients from the RUN DMC study (n = 52 for exploration and longitudinal analysis and n = 105 for validation). We compared two connectome pipelines utilizing single-shell or multi-shell diffusion MRI, while also systematically comparing different node and edge definitions. For clinical validation, we assessed the added benefit of network analysis in explaining processing speed and in detecting short-term disease progression. For technical validation, we determined test-retest repeatability. Our findings in clinical validation show that structural brain networks provide only a small added benefit over simpler global white matter diffusion metrics and do not capture short-term disease progression. Test-retest reliability was excellent for most brain networks. Our findings question the added value of brain network analysis in clinical applications in SVD and highlight the utility of simpler diffusion MRI based markers.


2021 ◽  
pp. 0271678X2110622
Author(s):  
Mengyang Xu ◽  
Binshi Bo ◽  
Mengchao Pei ◽  
Yuyan Chen ◽  
Christina Y Shu ◽  
...  

Functional magnetic resonance imaging (fMRI) techniques using the blood-oxygen level-dependent (BOLD) signal have shown great potential as clinical biomarkers of disease. Thus, using these techniques in preclinical rodent models is an urgent need. Calibrated fMRI is a promising technique that can provide high-resolution mapping of cerebral oxygen metabolism (CMRO2). However, calibrated fMRI is difficult to use in rodent models for several reasons: rodents are anesthetized, stimulation-induced changes are small, and gas challenges induce noisy CMRO2 predictions. We used, in mice, a relaxometry-based calibrated fMRI method which uses cerebral blood flow (CBF) and the BOLD-sensitive magnetic relaxation component, R2′, the same parameter derived in the deoxyhemoglobin-dilution model of calibrated fMRI. This method does not use any gas challenges, which we tested on mice in both awake and anesthetized states. As anesthesia induces a whole-brain change, our protocol allowed us to overcome the former limitations of rodent studies using calibrated fMRI. We revealed 1.5-2 times higher CMRO2, dependent upon brain region, in the awake state versus the anesthetized state. Our results agree with alternative measurements of whole-brain CMRO2 in the same mice and previous human anesthesia studies. The use of calibrated fMRI in rodents has much potential for preclinical fMRI.


Sign in / Sign up

Export Citation Format

Share Document