Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions

2018 ◽  
Vol 62 (1) ◽  
pp. 24-45 ◽  
Author(s):  
Shaoyong Lu ◽  
Jian Zhang
2014 ◽  
Vol 34 (4) ◽  
pp. 856-892 ◽  
Author(s):  
Dong Guo ◽  
Julia M. Hillger ◽  
Adriaan P. IJzerman ◽  
Laura H. Heitman

2004 ◽  
Vol 32 (5) ◽  
pp. 873-877 ◽  
Author(s):  
A. Christopoulos ◽  
L.T. May ◽  
V.A. Avlani ◽  
P.M. Sexton

Allosteric modulators of G-protein-coupled receptors interact with binding sites that are topographically distinct from the orthosteric site recognized by the receptor's endogenous agonist. Allosteric ligands offer a number of advantages over orthosteric drugs, including the potential for greater receptor subtype selectivity and a more ‘physiological’ regulation of receptor activity. However, the manifestations of allosterism at G-protein-coupled receptors are quite varied, and significant challenges remain for the optimization of screening methods to ensure the routine detection and validation of allosteric ligands.


2015 ◽  
Vol 353 (2) ◽  
pp. 246-260 ◽  
Author(s):  
Emma T. van der Westhuizen ◽  
Celine Valant ◽  
Patrick M. Sexton ◽  
Arthur Christopoulos

Blood ◽  
2009 ◽  
Vol 113 (20) ◽  
pp. 4942-4954 ◽  
Author(s):  
Yotis A. Senis ◽  
Michael G. Tomlinson ◽  
Stuart Ellison ◽  
Alexandra Mazharian ◽  
Jenson Lim ◽  
...  

Abstract Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase–linked and G protein–coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein–coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug target.


2013 ◽  
Vol 117 (43) ◽  
pp. 22362-22368 ◽  
Author(s):  
Wei-Ssu Liao ◽  
Huan H. Cao ◽  
Sarawut Cheunkar ◽  
Mitchell J. Shuster ◽  
Stefanie C. Altieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document