residence time
Recently Published Documents


TOTAL DOCUMENTS

4900
(FIVE YEARS 1040)

H-INDEX

96
(FIVE YEARS 13)

2022 ◽  
pp. 59-70
Author(s):  
Paula Birocchi ◽  
Juliana Correa Neiva Ferreira ◽  
Marcelo Dottori
Keyword(s):  

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122728
Author(s):  
Tumpa R. Sarker ◽  
Sonil Nanda ◽  
Venkatesh Meda ◽  
Ajay K. Dalai

Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 19
Author(s):  
Edgaras Ivanauskas ◽  
Andrius Skersonas ◽  
Vaidotas Andrašūnas ◽  
Soukaina Elyaagoubi ◽  
Artūras Razinkovas-Baziukas

The spatial distribution of biomass of main commercial fish species was mapped to estimate the supply of a provisioning fishery service in the Curonian lagoon. Catch per unit effort (CPUE) was used as a proxy to estimate the efficiency of commercial fishing and, subsequently, the potential biomass of fishes. The relationship between distinctive characteristics of the fishing areas and corresponding commercial catches and CPUE was analyzed using multivariate analysis. The total catch values and CPUE used in the analyses were derived from the official commercial fishery records. RDE analysis was used to assess the variation of both catch and CPUE of commercial fish species, while the percentages of bottom sediment type coverage, average depth, annual salinity, and water residence time in each of the fishing squares were used as explanatory variables. This distance e-based redundancy analysis allowed for the use of non-Euclidean dissimilarity indices. Fisheries data spatial distribution map indicated the lack of coherence between the spatial patterns of commercial catches and CPUE distribution in the northern part of the lagoon. Highest CPUE values were estimated in the central-eastern part of the lagoon as compared to the western part of the lagoon where CPUE values were substantially lower. Both total catch and CPUE appeared not to be related to the type of bottom habitats statistically while being spatially correlated in-between. However, the impact of salinity and water residence time calculated using the 3D hydraulic circulation model on the distribution of both CPUE and commercial catches was statistically significant.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 156
Author(s):  
Rita Noelle Moussa ◽  
Najah Moussa ◽  
Davide Dionisi

In the context of hydrogen production from biomass or organic waste with dark fermentation, this study analysed 55 studies (339 experiments) in the literature looking for the effect of operating parameters on the process performance of dark fermentation. The effect of substrate concentration, pH, temperature, and residence time on hydrogen yield, productivity, and content in the biogas was analysed. In addition, a linear regression model was developed to also account for the effect of nature and pretreatment of the substrate, inhibition of methanogenesis, and continuous or batch operating mode. The analysis showed that the hydrogen yield was mainly affected by pH and residence time, with the highest yields obtained for low pH and short residence time. High hydrogen productivity was favoured by high feed concentration, short residence time, and low pH. More modest was the effect on the hydrogen content. The mean values of hydrogen yield, productivity, and content were, respectively, 6.49% COD COD−1, 135 mg L−1 d−1, 51% v/v, while 10% of the considered experiments obtained yield, productivity, and content of or higher than 15.55% COD COD−1, 305.16 mg L−1 d−1, 64% v/v. Overall, this study provides insight into how to select the optimum operating conditions to obtain the desired hydrogen production.


Author(s):  
J Praveen Kumar ◽  
S Harika

The objective of this study is to design and evaluate Ziprasidone Floating pellets, which prolongs the release rate of the drug while extending the residence time of the drug within the body environment and without causing undeliterious effects to the subject. Ziprasidone and controlled matrix polymer granules were prepared by different granulation techniques in the ratio of 1:1, 1:1.5 and 1:2.Ziprasidone multi unit formulations comprising cellulose polymers were prepared by wet granulation technique, where as the Ziprasidone multi unit formulations comprising lipoidal / fatty polymers were prepared by melt granulation technique. Ziprasidone multi unit formulations with drug and polymer proportion as 1:1, F1 and F2 formulations consisting Cellulose polymers HPMC K4M and HPMC K100 respectively were prepared by wet granulation technique. Keywords: Ziprasidone, wet granulation, Floating pellets, melt granulation and polymer.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 170
Author(s):  
Marta Guerini ◽  
Giorgia Condrò ◽  
Paola Perugini

Different mucoadhesive systems have been studied in recent years to increase the residence time of the delivery systems and to prolong the release of the drug. The aim of this work was to evaluate the mucoadhesive properties of chitosan-based Microstructured Lipid Carrier (CH-MLC) with a new approach which requires chitosan and mucin to be compacted into a tablet and mucoadhesion to be assessed on a non-mucoadhesive substrate. This type of test showed that chitosan maintains a close bond with mucin even in the presence of a fluid and even encapsulated in microparticles. After this, using a bioreactor, the release of N-acetylcysteine (NAC) from the microparticles (NA-CH-MLC) through a layer of mucus mimicking the pathological conditions of a patient with cystic fibrosis was tested. The release of the active from NAC-CH-MLC demonstrated how the chitosan inside the microparticles acts as a penetration enhancer and how the microparticles can impart a prolonged release over time.


Author(s):  
Amaraporn Kaewchada ◽  
Rotsaman Chongcharoen ◽  
Preuk Tangpromphan ◽  
Khwanchanok Nakkong ◽  
Attasak Jaree

Encapsulation of vitamin E is the preservation of the biological activities of vitamin E for various applications. In the first part of this research, factors affecting the batch encapsulation of vitamin E, including PCL concentration, the concentration of Tween 20, and the volumetric ratio of aqueous phase to organic phase were experimentally investigated. The Box-Behnken experimental design and response surface methodology were implemented to determine the optimal operating conditions of the batch encapsulation. At the optimal conditions, the percentage of vitamin E encapsulation (%EC) was 98.69%, using the PCL concentration, the Tween 20 concentration, and the volumetric ratio of aqueous phase to organic phase of 3.6 g/L, 0.6 g/L, and 0.9 mL: 1 mL, respectively. The second part is to enhance the productivity by applying the optimized formulation of vitamin E encapsulation in a continuous process using a micro-channel encapsulator. The effect of residence time was investigated. At the residence time of 1 s, the percentage of vitamin E encapsulation of 97.28% and the productivity of 153.61 mg/(mL∙min) were achieved.


2022 ◽  
Vol 10 (1) ◽  
pp. 69
Author(s):  
Soukaina Elyaagoubi ◽  
Georg Umgiesser ◽  
Mehdi Maanan ◽  
Francesco Maicu ◽  
Jovita Mėžinė ◽  
...  

The finite element model SHYFEM was used to study the hydrodynamics and variability of water level, salinity, temperature, and water residence time (WRT) in the Oualidia lagoon located on the Moroccan Atlantic coast. The lagoon hosts a RAMSAR convention-protected area and also offers a set of valuable ecosystem services providing the source of income for the local population. To assess the effects of submarine groundwater discharge (SGD) inputs in the study area, four simulations were set up using different SGD inputs estimates in addition to tidal forcing, bathymetry, meteorological data including solar radiation, rain, and wind, in addition to boundary conditions in the Atlantic such as salinity, water level, and water temperature. The model was calibrated and validated using hydrodynamic measurements of previous studies in 2012 and 2013. The final results from the model are in good agreement with measured data. The simulation with SGD input ~0.05 m3 s−1 produced salinity values closest to the observed ones. Calculated spatial distribution of WRT, temperature, and salinity reduced to coordinates in two PCA axes is consistent with lagoon zones developed earlier using the benthic macroinvertebrate distribution. The calculated spatial distribution of WRT allowed us to evaluate the placement of oyster aquaculture farms and small-scale fisheries in relation to water quality issues existing in the lagoon.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009728
Author(s):  
He Li ◽  
Yixiang Deng ◽  
Konstantina Sampani ◽  
Shengze Cai ◽  
Zhen Li ◽  
...  

Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). MA leakage or rupture may precipitate local pathology in the surrounding neural retina that impacts visual function. Thrombosis in MAs may affect their turnover time, an indicator associated with visual and anatomic outcomes in the diabetic eyes. In this work, we perform computational modeling of blood flow in microchannels containing various MAs to investigate the pathologies of MAs in DR. The particle-based model employed in this study can explicitly represent red blood cells (RBCs) and platelets as well as their interaction in the blood flow, a process that is very difficult to observe in vivo. Our simulations illustrate that while the main blood flow from the parent vessels can perfuse the entire lumen of MAs with small body-to-neck ratio (BNR), it can only perfuse part of the lumen in MAs with large BNR, particularly at a low hematocrit level, leading to possible hypoxic conditions inside MAs. We also quantify the impacts of the size of MAs, blood flow velocity, hematocrit and RBC stiffness and adhesion on the likelihood of platelets entering MAs as well as their residence time inside, two factors that are thought to be associated with thrombus formation in MAs. Our results show that enlarged MA size, increased blood velocity and hematocrit in the parent vessel of MAs as well as the RBC-RBC adhesion promote the migration of platelets into MAs and also prolong their residence time, thereby increasing the propensity of thrombosis within MAs. Overall, our work suggests that computational simulations using particle-based models can help to understand the microvascular pathology pertaining to MAs in DR and provide insights to stimulate and steer new experimental and computational studies in this area.


Sign in / Sign up

Export Citation Format

Share Document