Mechanochemical Synthesis of Zinc Borate for Use as a Dual-Release B Fertilizer

Author(s):  
Bo Zheng ◽  
Shervin Kabiri ◽  
Ivan B. Andelkovic ◽  
Fien Degryse ◽  
Rodrigo da Silva ◽  
...  
2020 ◽  
Author(s):  
Theodosios Famprikis ◽  
O. Ulas Kudu ◽  
James Dawson ◽  
Pieremanuele Canepa ◽  
François Fauth ◽  
...  

<div> <p>Fast-ion conductors are critical to the development of solid-state batteries. The effects of mechanochemical synthesis that lead to increased ionic conductivity in an archetypical sodium-ion conductor Na<sub>3</sub>PS<sub>4</sub> are not fully understood. We present here a comprehensive analysis based on diffraction (Bragg, pair distribution function), spectroscopy (impedance, Raman, NMR, INS) and <i>ab-initio</i> simulations aimed at elucidating the synthesis-property relationships in Na<sub>3</sub>PS<sub>4</sub>. We consolidate previously reported interpretations about the local structure of ball-milled samples, underlining the sodium disorder and showing that a local tetragonal framework more accurately describes the structure than the originally proposed cubic one. Through variable-pressure impedance spectroscopy measurements, we report for the first time the activation volume for Na<sup>+</sup> migration in Na<sub>3</sub>PS<sub>4</sub>, which is ~30% higher for the ball-milled samples. Moreover, we show that the effect of ball-milling on increasing the ionic conductivity of Na<sub>3</sub>PS<sub>4</sub> to ~10<sup>-4</sup> S/cm can be reproduced by applying external pressure on a sample from conventional high temperature ceramic synthesis. We conclude that the key effects of mechanochemical synthesis on the properties of solid electrolytes can be analyzed and understood in terms of pressure, strain and activation volume.</p> </div>


2018 ◽  
Author(s):  
Mihails Arhangelskis ◽  
Athanassis Katsenis ◽  
Novendra Novendra ◽  
Zamirbek Akimbekov ◽  
Dayaker Gandrath ◽  
...  

By combining mechanochemical synthesis and calorimetry with theoretical calculations, we demonstrate that dispersion-corrected periodic density functional theory (DFT) can accurately survey the topological landscape and predict relative energies of polymorphs for a previously inaccessible fluorine-substituted zeolitic imidazolate framework (ZIF). Experimental screening confirmed two out of three theoretically anticipated polymorphs, and the calorimetric measurements provided an excellent match to theoretically calculated energetic difference between them.<br>


2010 ◽  
Vol 25 (5) ◽  
pp. 541-545 ◽  
Author(s):  
Hao WU ◽  
Cheng CHEN ◽  
Dan-Yu JIANG ◽  
Qiang LI

Sign in / Sign up

Export Citation Format

Share Document