Biological Production of Xylitol byCandida tropicalisand RecombinantSaccharomyces cerevisiaeContaining Xylose Reductase Gene

Author(s):  
Kwan-Hoon Moon ◽  
Woo-Jong Lee ◽  
Jay-Han Kim ◽  
Jin-Ho Choi ◽  
Yeon-Woo Ryu ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Tai Man Louie ◽  
Kailin Louie ◽  
Samuel DenHartog ◽  
Sridhar Gopishetty ◽  
Mani Subramanian ◽  
...  

Abstract Background Xylitol is a five-carbon sugar alcohol that has numerous beneficial health properties. It has almost the same sweetness as sucrose but has lower energy value compared to the sucrose. Metabolism of xylitol is insulin independent and thus it is an ideal sweetener for diabetics. It is widely used in food products, oral and personal care, and animal nutrition as well. Here we present a two-stage strategy to produce bio-xylitol from d-xylose using a recombinant Pichia pastoris expressing a heterologous xylose reductase gene. The recombinant P. pastoris cells were first generated by a low-cost, standard procedure. The cells were then used as a catalyst to make the bio-xylitol from d-xylose. Results Pichia pastoris expressing XYL1 from P. stipitis and gdh from B. subtilis demonstrated that the biotransformation was very efficient with as high as 80% (w/w) conversion within two hours. The whole cells could be re-used for multiple rounds of catalysis without loss of activity. Also, the cells could directly transform d-xylose in a non-detoxified hemicelluloses hydrolysate to xylitol at 70% (w/w) yield. Conclusions We demonstrated here that the recombinant P. pastoris expressing xylose reductase could transform d-xylose, either in pure form or in crude hemicelluloses hydrolysate, to bio-xylitol very efficiently. This biocatalytic reaction happened without the external addition of any NAD(P)H, NAD(P)+, and auxiliary substrate as an electron donor. Our experimental design & findings reported here are not limited to the conversion of d-xylose to xylitol only but can be used with other many oxidoreductase reactions also, such as ketone reductases/alcohol dehydrogenases and amino acid dehydrogenases, which are widely used for the synthesis of high-value chemicals and pharmaceutical intermediates.



Author(s):  
Ji-Hye Han ◽  
Ju-Yong Park ◽  
Kye Sang Yoo ◽  
Hyun Woo Kang ◽  
Gi-Wook Choi ◽  
...  


2004 ◽  
Vol 35 (6-7) ◽  
pp. 545-549 ◽  
Author(s):  
Sun-Myung Bae ◽  
Yong-Cheol Park ◽  
Tae-Hee Lee ◽  
Do-Hyun Kweon ◽  
Jin-Ho Choi ◽  
...  


1993 ◽  
Vol 39-40 (1) ◽  
pp. 135-147 ◽  
Author(s):  
Zhengdao Chen ◽  
Nancy W. Y. Ho


2021 ◽  
Author(s):  
Michael Louie ◽  
Kailin Louie ◽  
Samuel DenHartog ◽  
Sridhar Gopishetty ◽  
Mani Subramanian ◽  
...  

Abstract Background: Xylitol is a five-carbon sugar alcohol that has numerous beneficial health properties. It has almost the same sweetness as sucrose but has lower energy value compared to the sucrose. Metabolism of xylitol is insulin independent and thus it is an ideal sweetener for diabetics. It is widely used in food products, oral and personal care, and animal nutrition as well. Here we present a two-stage strategy to produce bio-xylitol from D-xylose using a recombinant Pichia pastoris expressing a heterologous xylose reductase gene. The recombinant P. pastoris cells were first generated by a low-cost, standard procedure. The cells were then used as a catalyst to make the bio-xylitol from D-xylose.Results: P. pastoris expressing XYL1 from P. stipitis and gdh from B. subtilis demonstrated that the biotransformation was very efficient with as high as 80% (w/w) conversion within two hours. The whole cells could be re-used for multiple rounds of catalysis without loss of activity. Also, the cells could directly transform D-xylose in a non-detoxified hemicelluloses hydrolysate to xylitol at 70% (w/w) yield.Conclusions: We demonstrated here that the recombinant P. pastoris expressing xylose reductase could transform D-xylose, either in pure form or in crude hemicelluloses hydrolysate, to bio-xylitol very efficiently. This biocatalytic reaction happened without the external addition of any NAD(P)H, NAD(P)+, and auxiliary substrate as an electron donor. Our experimental design & findings reported here are not limited to the conversion of D-xylose to xylitol only but can be used with other many oxidoreductase reactions also, such as ketone reductases/alcohol dehydrogenases and amino acid dehydrogenases, which are widely used for the synthesis of high-value chemicals and pharmaceutical intermediates.



1998 ◽  
Vol 64 (5) ◽  
pp. 1852-1859 ◽  
Author(s):  
Nancy W. Y. Ho ◽  
Zhengdao Chen ◽  
Adam P. Brainard

ABSTRACT Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomycesspp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transformSaccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2μm-based high-copy-number yeast-E. coli shuttle plasmids. In addition to the geneticin resistance and ampicillin resistance genes that serve as dominant selectable markers, these plasmids also contain three xylose-metabolizing genes, a xylose reductase gene, a xylitol dehydrogenase gene (both from Pichia stipitis), and a xylulokinase gene (from Saccharomyces cerevisiae). These xylose-metabolizing genes were also fused to signals controlling gene expression from S. cerevisiae glycolytic genes. Transformation of Saccharomyces sp. strain 1400 with each of these plasmids resulted in the conversion of strain 1400 from a non-xylose-metabolizing yeast to a xylose-metabolizing yeast that can effectively ferment xylose to ethanol and also effectively utilizes xylose for aerobic growth. Furthermore, the resulting recombinant yeasts also have additional extraordinary properties. For example, the synthesis of the xylose-metabolizing enzymes directed by the cloned genes in these recombinant yeasts does not require the presence of xylose for induction, nor is the synthesis repressed by the presence of glucose in the medium. These properties make the recombinant yeasts able to efficiently ferment xylose to ethanol and also able to efficiently coferment glucose and xylose present in the same medium to ethanol simultaneously.



2013 ◽  
Vol 23 (7) ◽  
pp. 984-992
Author(s):  
Hyoun-Soo Sim


Sign in / Sign up

Export Citation Format

Share Document