scholarly journals Production of bio-xylitol from d-xylose by an engineered Pichia pastoris expressing a recombinant xylose reductase did not require any auxiliary substrate as electron donor

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Tai Man Louie ◽  
Kailin Louie ◽  
Samuel DenHartog ◽  
Sridhar Gopishetty ◽  
Mani Subramanian ◽  
...  

Abstract Background Xylitol is a five-carbon sugar alcohol that has numerous beneficial health properties. It has almost the same sweetness as sucrose but has lower energy value compared to the sucrose. Metabolism of xylitol is insulin independent and thus it is an ideal sweetener for diabetics. It is widely used in food products, oral and personal care, and animal nutrition as well. Here we present a two-stage strategy to produce bio-xylitol from d-xylose using a recombinant Pichia pastoris expressing a heterologous xylose reductase gene. The recombinant P. pastoris cells were first generated by a low-cost, standard procedure. The cells were then used as a catalyst to make the bio-xylitol from d-xylose. Results Pichia pastoris expressing XYL1 from P. stipitis and gdh from B. subtilis demonstrated that the biotransformation was very efficient with as high as 80% (w/w) conversion within two hours. The whole cells could be re-used for multiple rounds of catalysis without loss of activity. Also, the cells could directly transform d-xylose in a non-detoxified hemicelluloses hydrolysate to xylitol at 70% (w/w) yield. Conclusions We demonstrated here that the recombinant P. pastoris expressing xylose reductase could transform d-xylose, either in pure form or in crude hemicelluloses hydrolysate, to bio-xylitol very efficiently. This biocatalytic reaction happened without the external addition of any NAD(P)H, NAD(P)+, and auxiliary substrate as an electron donor. Our experimental design & findings reported here are not limited to the conversion of d-xylose to xylitol only but can be used with other many oxidoreductase reactions also, such as ketone reductases/alcohol dehydrogenases and amino acid dehydrogenases, which are widely used for the synthesis of high-value chemicals and pharmaceutical intermediates.


2021 ◽  
Author(s):  
Michael Louie ◽  
Kailin Louie ◽  
Samuel DenHartog ◽  
Sridhar Gopishetty ◽  
Mani Subramanian ◽  
...  

Abstract Background: Xylitol is a five-carbon sugar alcohol that has numerous beneficial health properties. It has almost the same sweetness as sucrose but has lower energy value compared to the sucrose. Metabolism of xylitol is insulin independent and thus it is an ideal sweetener for diabetics. It is widely used in food products, oral and personal care, and animal nutrition as well. Here we present a two-stage strategy to produce bio-xylitol from D-xylose using a recombinant Pichia pastoris expressing a heterologous xylose reductase gene. The recombinant P. pastoris cells were first generated by a low-cost, standard procedure. The cells were then used as a catalyst to make the bio-xylitol from D-xylose.Results: P. pastoris expressing XYL1 from P. stipitis and gdh from B. subtilis demonstrated that the biotransformation was very efficient with as high as 80% (w/w) conversion within two hours. The whole cells could be re-used for multiple rounds of catalysis without loss of activity. Also, the cells could directly transform D-xylose in a non-detoxified hemicelluloses hydrolysate to xylitol at 70% (w/w) yield.Conclusions: We demonstrated here that the recombinant P. pastoris expressing xylose reductase could transform D-xylose, either in pure form or in crude hemicelluloses hydrolysate, to bio-xylitol very efficiently. This biocatalytic reaction happened without the external addition of any NAD(P)H, NAD(P)+, and auxiliary substrate as an electron donor. Our experimental design & findings reported here are not limited to the conversion of D-xylose to xylitol only but can be used with other many oxidoreductase reactions also, such as ketone reductases/alcohol dehydrogenases and amino acid dehydrogenases, which are widely used for the synthesis of high-value chemicals and pharmaceutical intermediates.



2020 ◽  
Author(s):  
Michael Louie ◽  
Kailin Louie ◽  
Samuel DenHartog ◽  
Sridhar Gopishetty ◽  
Mark Arnold ◽  
...  

Abstract Background: Xylitol is a five-carbon sugar alcohol that has numerous beneficial health properties. It has almost the same sweetness as sucrose but has lower energy value compared to the sucrose. Metabolism of xylitol is insulin independent and thus it is an ideal sweetener for diabetics. It is widely used in food products, oral and personal care, and animal nutrition as well. Here we present a two-stage strategy to produce bio-xylitol from D-xylose using a recombinant Pichia pastoris expressing a heterologous xylose reductase gene. The recombinant P. pastoris cells were first generated by a low-cost, standard procedure. The cells were then used as a catalyst to make the bio-xylitol from D-xylose.Results: P. pastoris expressing XYL1 from P. stipitis and gdh from B. subtilis demonstrated that the biotransformation was very efficient with as high as 80% (w/w) conversion within two hours. The whole cells could be re-used for multiple rounds of catalysis without loss of activity. Also, the cells could directly transform D-xylose in a non-detoxified hemicelluloses hydrolysate to xylitol at 70% (w/w) yield.Conclusions: We demonstrated here that the recombinant P. pastoris expressing xylose reductase could transform D-xylose, either in pure form or in crude hemicelluloses hydrolysate, to bio-xylitol very efficiently. This biocatalytic reaction happened without the external addition of any NAD(P)H, NAD(P)+, and auxiliary substrate as an electron donor. Our experimental design & findings reported here are not limited to the conversion of D-xylose to xylitol only but can be used with other many oxidoreductase reactions also, such as ketone reductases/alcohol dehydrogenases and amino acid dehydrogenases, which are widely used for the synthesis of high-value chemicals and pharmaceutical intermediates.



2020 ◽  
Author(s):  
Michael Louie ◽  
Kailin Louie ◽  
Samuel DenHartog ◽  
Sridhar Gopishetty ◽  
Mani Subramanian ◽  
...  

Abstract Background: Xylitol is a five-carbon sugar alcohol that has numerous beneficial health properties. It has almost the same sweetness as sucrose but has lower energy value compared to the sucrose. Metabolism of xylitol is insulin independent and thus it is an ideal sweetener for diabetics. It is widely used in food products, oral and personal care, and animal nutrition as well. Here we present a two-stage strategy to produce bio-xylitol from D-xylose using a recombinant Pichia pastoris expressing a heterologous xylose reductase gene. The recombinant P. pastoris cells were first generated by a low-cost, standard procedure. The cells were then used as a catalyst to make the bio-xylitol from D-xylose. Results: P. pastoris expressing XYL1 from P. stipitis and gdh from B. subtilis demonstrated that the biotransformation was very efficient with as high as 80% (w/w) conversion within two hours. The whole cells could be re-used for multiple rounds of catalysis without loss of activity. Also, the cells could directly transform D-xylose in a non-detoxified hemicelluloses hydrolysate to xylitol at 70% (w/w) yield. Conclusions: We demonstrated here that the recombinant P. pastoris expressing xylose reductase could transform D-xylose, either in pure form or in crude hemicelluloses hydrolysate, to bio-xylitol very efficiently. This biocatalytic reaction happened without the external addition of any NAD(P)H, NAD(P) + , and auxiliary substrate as an electron donor. Our experimental design & findings reported here are not limited to the conversion of D-xylose to xylitol only but can be used with other many oxidoreductase reactions also, such as ketone reductases/alcohol dehydrogenases and amino acid dehydrogenases, which are widely used for the synthesis of high-value chemicals and pharmaceutical intermediates.





Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1949
Author(s):  
Edoardo Masut ◽  
Alessandro Battaglia ◽  
Luca Ferioli ◽  
Anna Legnani ◽  
Carolina Cruz Viggi ◽  
...  

In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes.



2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Wei Lu ◽  
Jinhui Feng ◽  
Xi Chen ◽  
Yun-Juan Bao ◽  
Yu Wang ◽  
...  

ABSTRACT In this study, we identified two P450 enzymes (CYP5150AP3 and CYP5150AN1) from Thanatephorus cucumeris NBRC 6298 by combination of transcriptome sequencing and heterologous expression in Pichia pastoris. The biotransformation of 11-deoxycortisol and testosterone by Pichia pastoris whole cells coexpressing the cyp5150ap3 and por genes demonstrated that the CYP5150AP3 enzyme possessed steroidal 7β-hydroxylase activities toward these substrates, and the regioselectivity was dependent on the structures of steroidal compounds. CYP5150AN1 catalyzed the 2β-hydroxylation of 11-deoxycortisol. It is interesting that they display different regioselectivity of hydroxylation from that of their isoenzyme, CYP5150AP2, which possesses 19- and 11β-hydroxylase activities. IMPORTANCE The steroidal hydroxylases CYP5150AP3 and CYP5150AN1 together with the previously characterized CYP5150AP2 belong to the CYP5150A family of P450 enzymes with high amino acid sequence identity, but they showed completely different regioselectivities toward 11-deoxycortisol, suggesting the regioselectivity diversity of steroidal hydroxylases of CYP5150 family. They are also distinct from the known bacterial and fungal steroidal hydroxylases in substrate specificity and regioselectivity. Biocatalytic hydroxylation is one of the important transformations for the functionalization of steroid nucleus rings but remains a very challenging task in organic synthesis. These hydroxylases are useful additions to the toolbox of hydroxylase enzymes for the functionalization of steroids at various positions.



1988 ◽  
Vol 542 (1 Enzyme Engine) ◽  
pp. 428-433 ◽  
Author(s):  
SHELDON J. B. DUFF ◽  
WILLIAM D. MURRAY
Keyword(s):  


Author(s):  
Ji-Hye Han ◽  
Ju-Yong Park ◽  
Kye Sang Yoo ◽  
Hyun Woo Kang ◽  
Gi-Wook Choi ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document