Synthesis of amino-containing phosphines. The use of iminophosphorane as a protecting group for primary amines

1992 ◽  
Vol 57 (22) ◽  
pp. 6079-6080 ◽  
Author(s):  
Shiuh Tzung Liu ◽  
Chung Yuan Liu
ChemInform ◽  
2010 ◽  
Vol 23 (15) ◽  
pp. no-no
Author(s):  
R. P. BONAR-LAW ◽  
A. P. DAVIS ◽  
B. J. DORGAN ◽  
M. T. REETZ ◽  
A. WEHRSIG

Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1313
Author(s):  
Andrea Temperini ◽  
Donatella Aiello ◽  
Fabio Mazzotti ◽  
Constantinos M. Athanassopoulos ◽  
Pierantonio De Luca ◽  
...  

A synthetic strategy for the preparation of two orthogonally protected methyl esters of the non-proteinogenic amino acid 2,3-l-diaminopropanoic acid (l-Dap) was developed. In these structures, the base-labile protecting group 9-fluorenylmethyloxycarbonyl (Fmoc) was paired to the p-toluensulfonyl (tosyl, Ts) or acid-labile tert-butyloxycarbonyl (Boc) moieties. The synthetic approach to protected l-Dap methyl esters uses appropriately masked 2,3-diaminopropanols, which are obtained via reductive amination of an aldehyde prepared from the commercial amino acid Nα-Fmoc-O-tert-butyl-d-serine, used as the starting material. Reductive amination is carried out with primary amines and sulfonamides, and the process is assisted by the Lewis acid Ti(OiPr)4. The required carboxyl group is installed by oxidizing the alcoholic function of 2,3-diaminopropanols bearing the tosyl or benzyl protecting group on the 3-NH2 site. The procedure can easily be applied using the crude product obtained after each step, minimizing the need for chromatographic purifications. Chirality of the carbon atom of the starting d-serine template is preserved throughout all synthetic steps.


Tetrahedron ◽  
1998 ◽  
Vol 54 (24) ◽  
pp. 6817-6832 ◽  
Author(s):  
Barrie Kellam ◽  
Barrie W. Bycroft ◽  
Weng C. Chan ◽  
Siri Ram Chhabra

ChemInform ◽  
2010 ◽  
Vol 23 (15) ◽  
pp. no-no
Author(s):  
R. P. BONAR-LAW ◽  
A. P. DAVIS ◽  
B. J. DORGAN

ChemInform ◽  
1987 ◽  
Vol 18 (7) ◽  
Author(s):  
L. E. OVERMAN ◽  
M. E. OKAZAKI ◽  
P. MISHRA

2021 ◽  
Author(s):  
◽  
Emma Marie Dangerfield

<p>In this thesis I investigated two aspects of glycobiology. In the first, I investigated the potential of α-GalCer analogues to be used in cancer immunotherapy. Two 4-deoxy α-GalCer analogues, with either a sphinganine or a sphingosine base, were synthesised using a convergent strategy. The α-GalCer sphinganine derivative was synthesised in 14 steps from D-arabinose, and in an overall 13% yield. The α-GalCer sphingosine analogue was synthesised in 13 steps also in 13% yield. Biological analysis revealed that both 4-deoxy analogues possessed comparable activity to α-GalCer in mice, however demonstrated significantly reduced hNKT cell activity. The reduced activity was attributed to species-specific differences in iNKT cell glycolipid recognition rather than reduced CD1d presentation. From these results we suggest that glycolipids developed for potent CD1d-iNKT cell activity in humans should contain a ceramide base with the 4-hydroxyl present. The second part of this thesis focused on protecting group free methodology for the synthesis of sugar mimetics that have proven potential as glycosidase inhibitors. In this work I developed an efficient, high yielding and diastereoselective strategy for the synthesis of a number of five and six membered azasugars. This strategy utilises two novel reaction methodologies. The first enabled the stereoselective formation of cyclic carbamates from olefinic amines, the transition states controlling the stereoselectivity during this reaction are discussed. The second reaction facilitated the synthesis of primary amines without the need for protecting groups, the scope of this reductive amination methodology is also investigated. The five membered azasugars 1,4-dideoxy-1,4-imino-Dxylitol, 1,4-dideoxy-1,4-imino-L-lyxitol, 1,4-dideoxy-1,4-imino-L-xylitol and 1,2,4-trideoxy-1,4-imino-L-xylitol were prepared in 5 steps, in good overall yields (57%, 55%, 54% and 48% respectively), and without the need for protecting groups. The six membered azasugar DGJ was prepared over six steps in 33% yield using similar methodology. The synthesised compounds were also tested for anti-tubercular activity using a BCG alamar blue assay.</p>


2021 ◽  
Author(s):  
◽  
Alexander Hunt-Painter

<p>This thesis investigated the development and application of methodology for the synthesis of iminosugars. The first portion of this thesis (Chapters 2 and 3) explored the scope of previously established protecting-group-free Vasella-reductive-amination and I2-mediated carbamate annulation methodology initially developed within the Stocker-Timmer group for the synthesis of pyrrolidines and piperidines from aldose sugars. In this thesis, the Vasella-reductive-amination methodology was extended to include the use of ketose sugars as starting materials, thereby allowing for the synthesis of primary amines directly from in situ formed ketones under protecting-group-free conditions. The scope of the carbamate annulation was then explored, whereby it was determined that both steric and electronic effects appear to affect transition state energies during the annulation reaction. Here, formation of pyrrolidines with the 2,5-trans and 3,4-cis relationships are favoured, however, in circumstances were conflicting electronic- and steric-effects are present, steric-effects dominate thereby favouring the formation of the 2,5-trans product. Using a combination of this Vasella-reductive-amination and carbamate annulation methodology, 2,5-dideoxy-2,5-imino-L-iditol was thus synthesised in 6 steps and 18% overall yield from D-fructose. Next, the same methodology was applied to the synthesis of the promising molecular chaperone 2,5-dideoxy-2,5-imino-D-altritol. Thus, 2,5-dideoxy-2,5-imino-D-altritol was synthesised over 7 steps and in 22% yield from D-tagatose, which is the most efficient synthesis of this iminosugar to date.  The second part of this thesis (Chapters 4 and 5) focused on the optimisation and development of synthetic methodology that would allow for the highly efficient synthesis of a variety of iminosugars including piperidines and azepanes. To this end, modifications to existing synthetic methodology allowed for the rapid synthesis of a variety of iodoglycosides, which are important synthons. Next, reductive amination/cyclisation methodology that allowed for the direct transformation of methyl iodoglycosides or isopropylidene-protected iodoglycosides into iminosugars was developed. As such, the piperidines 1-Deoxynojirimycin, 1-Deoxymannojirimycin (DMJ), L-1-Deoxygalactojirimycin (L-DGJ), and (3R,4r,5S)-piperidine-3,4,5-triol were prepared in 4 steps and good overall yields (44%, 62%, 67%, and 53%, respectively). In the case of DMJ and (3R,4r,5S)-piperidine-3,4,5-triol, these are the most efficient syntheses of these materials to date. Factors influencing the stereochemical outcome of the reductive amination reaction were also explored, and evidence suggests that the reduction occurs from the least sterically hindered face of an intermediate cyclic imine, whereby the preferred conformation of the imine is the one which places the largest number of substituents in the pseudo-equatorial position. Using analogous methodology, the azepane (3S,4R,5S,6R)-azepane-3,4,5,6-tetraol was also prepared in 4 steps and good yield (53%).</p>


Synlett ◽  
2007 ◽  
Vol 2007 (9) ◽  
pp. 1436-1440 ◽  
Author(s):  
Tadamitsu Sakurai ◽  
Tetsutaro Igarashi ◽  
Masaru Shimokawa ◽  
Miyuki Iwasaki ◽  
Kensaku Nagata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document