steric effects
Recently Published Documents


TOTAL DOCUMENTS

2541
(FIVE YEARS 127)

H-INDEX

77
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Wataru Matsuoka ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The ligand screening process, in which an optimal ligand for a reaction of interest is identified from an enormous and diverse set of candidate molecules, is of particular importance in the development of transition metal catalysis. Conventionally, this process has been performed by experimental trial-and-error cycles, which require significant time and resources. Herein, we report a novel strategy called “virtual-ligand-assisted (VLA) screening” that enables practical in silico ligand screening based on the transition state theory. We developed a virtual ligand, PCl*3, which parameterizes both the electronic and steric effects of monodentate phosphorus(III) ligands in quantum chemical calculations, and used it to assess how these effects perturb the energy profile of a reaction. This parameter-based ligand screening approach allowed us to identify the optimal electronic and steric effects for a reaction of interest, thereby affording guiding principles for rational ligand design. The VLA screening strategy was demonstrated for the selectivity-determining step of the rhodium-catalyzed hydroformylation of a terminal olefin, and phosphorus(III) ligands with potentially high linear or branched selectivities were designed. These findings indicate that VLA screening is a promising approach for streamlining the ligand screening process.


2021 ◽  
Author(s):  
Daniel Ess ◽  
Nathan Morgan ◽  
Steven Maley ◽  
Doo-Hyun Kwon ◽  
Michael Webster-Gardiner ◽  
...  

One approach to selectively generate 1-hexene is through ethylene trimerization using highly active Cr N-phosphinoamidine catalysts ((P,N)Cr). Depending on the ligand, (P,N)Cr catalysts can either generate nearly pure 1-hexene or form 1-hexene with significant mixtures of other C6 mass products, for example methylenecyclopentane. Here we report DFT transition state modeling examining 1-hexene catalysis pathways as well as pathways that lead to alternative C6 mass products. This provided qualitative and semi-quantitative modeling of the experimental 1-hexene purity values for several (P,N)Cr catalysts. Consistent with previous computational studies, the key 1-hexene purity-determining transition states were determined to be β-hydrogen transfer structures from the metallacycloheptane intermediate. The origin of selectivity for these (P,N)Cr catalysts can be attributed to steric effects in the transition-state structure with coordinated ethylene that leads to C6 impurities.


Nano Letters ◽  
2021 ◽  
Author(s):  
Yan Chen ◽  
Mingzhu Huang ◽  
Qinghai Zhou ◽  
Zhen Li ◽  
Jing Meng ◽  
...  

2021 ◽  
Author(s):  
Kate Nicastri ◽  
Soren Zappia ◽  
Jared Pratt ◽  
Julia Duncan ◽  
Ilia Guzei ◽  
...  

Methods for rapid preparation of densely functionalized and stereochemically complex N-heterocyclic scaffolds are in demand for exploring potential new bioactive chemical space. This work describes experimental and computational studies to better understand the features of aziridinium ylides as intermediates for the synthesis of highly substituted dehydromorpholines. The development of this chemistry has enabled the extension of aziridinium ylide chemistry to the concomitant formation of both a C–N and a C–O bond in a manner that preserves the stereochemical information embedded in the substrate. The chemistry is tolerant of a wide range of functionalities that can be employed for DNA-encoded library (DEL) synthesis to prepare diverse libraries of heterocycles with potential bioactivity. In addition, we have uncovered several key insights that describe the importance of steric effects, rotational barriers around the C–N bond of the aziridinium ylide, and non-covalent interactions (NCIs) on the ultimate reaction outcome. These critical insights will assist in the further development of this chemistry to generate novel and complex N-heterocycles that will further expand complex amine chemical space.


2021 ◽  
Author(s):  
◽  
Alexander Hunt-Painter

<p>This thesis investigated the development and application of methodology for the synthesis of iminosugars. The first portion of this thesis (Chapters 2 and 3) explored the scope of previously established protecting-group-free Vasella-reductive-amination and I2-mediated carbamate annulation methodology initially developed within the Stocker-Timmer group for the synthesis of pyrrolidines and piperidines from aldose sugars. In this thesis, the Vasella-reductive-amination methodology was extended to include the use of ketose sugars as starting materials, thereby allowing for the synthesis of primary amines directly from in situ formed ketones under protecting-group-free conditions. The scope of the carbamate annulation was then explored, whereby it was determined that both steric and electronic effects appear to affect transition state energies during the annulation reaction. Here, formation of pyrrolidines with the 2,5-trans and 3,4-cis relationships are favoured, however, in circumstances were conflicting electronic- and steric-effects are present, steric-effects dominate thereby favouring the formation of the 2,5-trans product. Using a combination of this Vasella-reductive-amination and carbamate annulation methodology, 2,5-dideoxy-2,5-imino-L-iditol was thus synthesised in 6 steps and 18% overall yield from D-fructose. Next, the same methodology was applied to the synthesis of the promising molecular chaperone 2,5-dideoxy-2,5-imino-D-altritol. Thus, 2,5-dideoxy-2,5-imino-D-altritol was synthesised over 7 steps and in 22% yield from D-tagatose, which is the most efficient synthesis of this iminosugar to date.  The second part of this thesis (Chapters 4 and 5) focused on the optimisation and development of synthetic methodology that would allow for the highly efficient synthesis of a variety of iminosugars including piperidines and azepanes. To this end, modifications to existing synthetic methodology allowed for the rapid synthesis of a variety of iodoglycosides, which are important synthons. Next, reductive amination/cyclisation methodology that allowed for the direct transformation of methyl iodoglycosides or isopropylidene-protected iodoglycosides into iminosugars was developed. As such, the piperidines 1-Deoxynojirimycin, 1-Deoxymannojirimycin (DMJ), L-1-Deoxygalactojirimycin (L-DGJ), and (3R,4r,5S)-piperidine-3,4,5-triol were prepared in 4 steps and good overall yields (44%, 62%, 67%, and 53%, respectively). In the case of DMJ and (3R,4r,5S)-piperidine-3,4,5-triol, these are the most efficient syntheses of these materials to date. Factors influencing the stereochemical outcome of the reductive amination reaction were also explored, and evidence suggests that the reduction occurs from the least sterically hindered face of an intermediate cyclic imine, whereby the preferred conformation of the imine is the one which places the largest number of substituents in the pseudo-equatorial position. Using analogous methodology, the azepane (3S,4R,5S,6R)-azepane-3,4,5,6-tetraol was also prepared in 4 steps and good yield (53%).</p>


2021 ◽  
Author(s):  
◽  
Alexander Hunt-Painter

<p>This thesis investigated the development and application of methodology for the synthesis of iminosugars. The first portion of this thesis (Chapters 2 and 3) explored the scope of previously established protecting-group-free Vasella-reductive-amination and I2-mediated carbamate annulation methodology initially developed within the Stocker-Timmer group for the synthesis of pyrrolidines and piperidines from aldose sugars. In this thesis, the Vasella-reductive-amination methodology was extended to include the use of ketose sugars as starting materials, thereby allowing for the synthesis of primary amines directly from in situ formed ketones under protecting-group-free conditions. The scope of the carbamate annulation was then explored, whereby it was determined that both steric and electronic effects appear to affect transition state energies during the annulation reaction. Here, formation of pyrrolidines with the 2,5-trans and 3,4-cis relationships are favoured, however, in circumstances were conflicting electronic- and steric-effects are present, steric-effects dominate thereby favouring the formation of the 2,5-trans product. Using a combination of this Vasella-reductive-amination and carbamate annulation methodology, 2,5-dideoxy-2,5-imino-L-iditol was thus synthesised in 6 steps and 18% overall yield from D-fructose. Next, the same methodology was applied to the synthesis of the promising molecular chaperone 2,5-dideoxy-2,5-imino-D-altritol. Thus, 2,5-dideoxy-2,5-imino-D-altritol was synthesised over 7 steps and in 22% yield from D-tagatose, which is the most efficient synthesis of this iminosugar to date.  The second part of this thesis (Chapters 4 and 5) focused on the optimisation and development of synthetic methodology that would allow for the highly efficient synthesis of a variety of iminosugars including piperidines and azepanes. To this end, modifications to existing synthetic methodology allowed for the rapid synthesis of a variety of iodoglycosides, which are important synthons. Next, reductive amination/cyclisation methodology that allowed for the direct transformation of methyl iodoglycosides or isopropylidene-protected iodoglycosides into iminosugars was developed. As such, the piperidines 1-Deoxynojirimycin, 1-Deoxymannojirimycin (DMJ), L-1-Deoxygalactojirimycin (L-DGJ), and (3R,4r,5S)-piperidine-3,4,5-triol were prepared in 4 steps and good overall yields (44%, 62%, 67%, and 53%, respectively). In the case of DMJ and (3R,4r,5S)-piperidine-3,4,5-triol, these are the most efficient syntheses of these materials to date. Factors influencing the stereochemical outcome of the reductive amination reaction were also explored, and evidence suggests that the reduction occurs from the least sterically hindered face of an intermediate cyclic imine, whereby the preferred conformation of the imine is the one which places the largest number of substituents in the pseudo-equatorial position. Using analogous methodology, the azepane (3S,4R,5S,6R)-azepane-3,4,5,6-tetraol was also prepared in 4 steps and good yield (53%).</p>


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6147
Author(s):  
Mirosław Jabłoński

This article discusses the properties of as many as 30 carbene–ZnX2 (X = H, Me, Et) complexes featuring a zinc bond C⋯Zn. The group of carbenes is represented by imidazol-2-ylidene and its nine derivatives (labeled as IR), in which both hydrogen atoms of N-H bonds have been substituted by R groups with various spatial hindrances, from the smallest Me, iPr, tBu through Ph, Tol, and Xyl to the bulkiest Mes, Dipp, and Ad. The main goal is to study the relationship between type and size of R and X and both the strength of C⋯Zn and the torsional angle of the ZnX2 plane with respect to the plane of the imidazol-2-ylidene ring. Despite the considerable diversity of R and X, the range of dC⋯Zn is quite narrow: 2.12–2.20 Å. On the contrary, D0 is characterized by a fairly wide range of 18.5–27.4 kcal/mol. For the smallest carbenes, the ZnX2 molecule is either in the plane of the carbene or is only slightly twisted with respect to it. The twist angle becomes larger and more varied with the bulkier R. However, the value of this angle is not easy to predict because it results not only from the presence of steric effects but also from the possible presence of various interatomic interactions, such as dihydrogen bonds, tetrel bonds, agostic bonds, and hydrogen bonds. It has been shown that at least some of these interactions may have a non-negligible influence on the structure of the IR–ZnX2 complex. This fact should be taken into account in addition to the commonly discussed R⋯X steric repulsion.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Wenlin Jiang ◽  
Zhibing Tan ◽  
Renad Almughathawi ◽  
Qingqing Wu ◽  
Zitong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document