Limit Theorems for Stopped Functionals of Markov Renewal Processes

1999 ◽  
Vol 51 (2) ◽  
pp. 369-382 ◽  
Author(s):  
Gerold Alsmeyer ◽  
Allan Gut
1964 ◽  
Vol 35 (4) ◽  
pp. 1746-1764 ◽  
Author(s):  
Ronald Pyke ◽  
Ronald Schaufele

1985 ◽  
Vol 22 (02) ◽  
pp. 253-266
Author(s):  
Seppo Niemi

The paper is concerned with Markov renewal processes satisfying a certain non-singularity condition. The relation of this condition to irreducibility, Harris recurrence and regularity of the associated forward Markov process is studied. This enables one to prove limit theorems of a total variation type for Markov renewal processes and semi-regenerative processes by applying Orey's theorem to the forward process. The results are applied to a GI/G/1 queue and a growth-catastrophe population model.


1999 ◽  
Vol 36 (2) ◽  
pp. 415-432 ◽  
Author(s):  
Frank Ball

In this paper, central limit theorems for multivariate semi-Markov sequences and processes are obtained, both as the number of jumps of the associated Markov chain tends to infinity and, if appropriate, as the time for which the process has been running tends to infinity. The theorems are widely applicable since many functions defined on Markov or semi-Markov processes can be analysed by exploiting appropriate embedded multivariate semi-Markov sequences. An application to a problem in ion channel modelling is described in detail. Other applications, including to multivariate stationary reward processes, counting processes associated with Markov renewal processes, the interpretation of Markov chain Monte Carlo runs and statistical inference on semi-Markov models are briefly outlined.


1976 ◽  
Vol 8 (03) ◽  
pp. 531-547 ◽  
Author(s):  
Esa Nummelin

In this paper the limit behaviour of α-recurrent Markov renewal processes and semi-Markov processes is studied by using the recent results on the concept of α-recurrence for Markov renewal processes. Section 1 contains the preliminary results, which are needed later in the paper. In Section 2 we consider the limit behaviour of the transition probabilities Pij (t) of an α-recurrent semi-Markov process. Section 4 deals with quasi-stationarity. Our results extend the results of Cheong (1968), (1970) and of Flaspohler and Holmes (1972) to the case in which the functions to be considered are directly Riemann integrable. We also try to correct the errors we have found in these papers. As a special case from our results we consider continuous-time Markov processes in Sections 3 and 5.


1976 ◽  
Vol 8 (3) ◽  
pp. 531-547 ◽  
Author(s):  
Esa Nummelin

In this paper the limit behaviour of α-recurrent Markov renewal processes and semi-Markov processes is studied by using the recent results on the concept of α-recurrence for Markov renewal processes. Section 1 contains the preliminary results, which are needed later in the paper. In Section 2 we consider the limit behaviour of the transition probabilities Pij(t) of an α-recurrent semi-Markov process. Section 4 deals with quasi-stationarity. Our results extend the results of Cheong (1968), (1970) and of Flaspohler and Holmes (1972) to the case in which the functions to be considered are directly Riemann integrable. We also try to correct the errors we have found in these papers. As a special case from our results we consider continuous-time Markov processes in Sections 3 and 5.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 158
Author(s):  
Anatoliy Swishchuk ◽  
Nikolaos Limnios

In this paper, we introduced controlled discrete-time semi-Markov random evolutions. These processes are random evolutions of discrete-time semi-Markov processes where we consider a control. applied to the values of random evolution. The main results concern time-rescaled weak convergence limit theorems in a Banach space of the above stochastic systems as averaging and diffusion approximation. The applications are given to the controlled additive functionals, controlled geometric Markov renewal processes, and controlled dynamical systems. We provide dynamical principles for discrete-time dynamical systems such as controlled additive functionals and controlled geometric Markov renewal processes. We also produce dynamic programming equations (Hamilton–Jacobi–Bellman equations) for the limiting processes in diffusion approximation such as controlled additive functionals, controlled geometric Markov renewal processes and controlled dynamical systems. As an example, we consider the solution of portfolio optimization problem by Merton for the limiting controlled geometric Markov renewal processes in diffusion approximation scheme. The rates of convergence in the limit theorems are also presented.


1999 ◽  
Vol 36 (02) ◽  
pp. 415-432 ◽  
Author(s):  
Frank Ball

In this paper, central limit theorems for multivariate semi-Markov sequences and processes are obtained, both as the number of jumps of the associated Markov chain tends to infinity and, if appropriate, as the time for which the process has been running tends to infinity. The theorems are widely applicable since many functions defined on Markov or semi-Markov processes can be analysed by exploiting appropriate embedded multivariate semi-Markov sequences. An application to a problem in ion channel modelling is described in detail. Other applications, including to multivariate stationary reward processes, counting processes associated with Markov renewal processes, the interpretation of Markov chain Monte Carlo runs and statistical inference on semi-Markov models are briefly outlined.


Sign in / Sign up

Export Citation Format

Share Document