Ozone and peroxy radical budgets in the marine boundary layer: Modeling the effect ofNOx

1999 ◽  
Vol 104 (D7) ◽  
pp. 8047-8056
Author(s):  
R. A. Cox
2009 ◽  
Vol 9 (9) ◽  
pp. 3075-3093 ◽  
Author(s):  
R. Sommariva ◽  
H. D. Osthoff ◽  
S. S. Brown ◽  
T. S. Bates ◽  
T. Baynard ◽  
...  

Abstract. This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5) in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM) was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS) in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average. The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5 (γN2O5)>1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15%) of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS).


2006 ◽  
Vol 6 (8) ◽  
pp. 2193-2214 ◽  
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
D. E. Heard ◽  
W. J. Bloss ◽  
...  

Abstract. Peroxy radical (HO2+ΣRO2) measurements, using the PEroxy Radical Chemical Amplification (PERCA) technique at the North Atlantic Marine Boundary Layer EXperiment (NAMBLEX) at Mace Head in summer 2002, are presented and put into the context of marine, boundary-layer chemistry. A suite of other chemical parameters (NO, NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis frequencies and meteorological measurements, are used to present a detailed analysis of the role of peroxy radicals in tropospheric oxidation cycles and ozone formation. Under the range of conditions encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal cycles showed an asymmetric shape typically shifted to the afternoon. Using a box model based on the master chemical mechanism the average model measurement agreement was 2.5 across the campaign. The addition of halogen oxides to the model increases the level of model/measurement agreement, apparently by respeciation of HOx. A good correlation exists between j(HCHO).[HCHO] and the peroxy radicals indicative of the importance of HCHO in the remote atmosphere as a HOx source, particularly in the afternoon. The peroxy radicals showed a strong dependence on [NO2] with a break point at 0.1 ppbv, where the radicals increased concomitantly with the reactive VOC loading, this is a lower value than seen at representative urban campaigns. The HO2/(HO2+ΣRO2) ratios are dependent on [NOx] ranging between 0.2 and 0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-alkene chemistry to night-time peroxy radical production was shown to be on average 59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h-1. The ozone production rate was strongly dependent on [NO] having linear sensitivity (dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) (the in-situ net photochemical rate of ozone production/destruction) will be strongly sensitive in the marine boundary layer to small changes in [NO] which has ramifications for changing NOx loadings in the European continental boundary layer.


2001 ◽  
Vol 106 (D18) ◽  
pp. 20833-20846 ◽  
Author(s):  
Maria Dolores Andrés Hernández ◽  
Jörn Burkert ◽  
Lars Reichert ◽  
Dirk Stöbener ◽  
Julian Meyer-Arnek ◽  
...  

2005 ◽  
Vol 5 (6) ◽  
pp. 12313-12371 ◽  
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
D. E. Heard ◽  
W. J. Bloss ◽  
...  

Abstract. Peroxy radical (HO2+ΣRO2) measurements, using the PEroxy Radical Chemical Amplification (PERCA) technique at the North Atlantic Marine Boundary Layer EXperiment (NAMBLEX) at Mace Head in summer 2002, are presented and put into the context of marine, boundary-layer chemistry. A suite of other chemical parameters (NO, NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis frequencies and meteorological measurements, are used to present a detailed analysis of the role of peroxy radicals in tropospheric oxidation cycles and ozone formation. Under the range of conditions encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal cycles showed an asymmetric shape typically shifted to the afternoon. Using a box model based on the master chemical mechanism the average model measurement agreement was 2.5 across the campaign. The addition of halogen oxides to the model increases the level of model/measurement agreement, apparently by respeciation of HOx. A good correlation exists between j(HCHO).[HCHO] and the peroxy radicals indicative of the importance of HCHO in the remote atmosphere as a HOx source, particularly in the afternoon. The peroxy radicals showed a strong dependence on [NOx] with a break point at 0.1 ppbv, where the radicals increased concomitantly with the reactive VOC loading, this is a lower value than seen at representative urban campaigns. The HO2/(HO2+ΣRO2) ratios are dependent on [NOx] ranging between 0.2 and 0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-alkene chemistry to night-time peroxy radical production was shown to be on average 59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h−1. The ozone production rate was strongly dependent on [NO] having linear sensitivity (dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) (the in-situ net photochemical rate of ozone production/destruction) will be strongly sensitive in the marine boundary layer to small changes in [NO] which has ramifications for changing NOx loadings in the European continental boundary layer.


1996 ◽  
Vol 23 (5) ◽  
pp. 535-538 ◽  
Author(s):  
Paul S. Monks ◽  
Lucy J. Carpenter ◽  
Smart A. Penkett ◽  
Gregory P. Ayers

2008 ◽  
Vol 8 (4) ◽  
pp. 16643-16692 ◽  
Author(s):  
R. Sommariva ◽  
H. D. Osthoff ◽  
S. S. Brown ◽  
T. S. Bates ◽  
T. Baynard ◽  
...  

Abstract. This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5) in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM) was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS) in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average. The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5 (γN2O5)>1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15%) of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS).


Sign in / Sign up

Export Citation Format

Share Document