Night-time peroxy radical chemistry in the remote marine boundary layer over the Southern Ocean

1996 ◽  
Vol 23 (5) ◽  
pp. 535-538 ◽  
Author(s):  
Paul S. Monks ◽  
Lucy J. Carpenter ◽  
Smart A. Penkett ◽  
Gregory P. Ayers
2009 ◽  
Vol 9 (9) ◽  
pp. 3075-3093 ◽  
Author(s):  
R. Sommariva ◽  
H. D. Osthoff ◽  
S. S. Brown ◽  
T. S. Bates ◽  
T. Baynard ◽  
...  

Abstract. This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5) in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM) was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS) in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average. The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5 (γN2O5)>1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15%) of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS).


2006 ◽  
Vol 6 (8) ◽  
pp. 2193-2214 ◽  
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
D. E. Heard ◽  
W. J. Bloss ◽  
...  

Abstract. Peroxy radical (HO2+ΣRO2) measurements, using the PEroxy Radical Chemical Amplification (PERCA) technique at the North Atlantic Marine Boundary Layer EXperiment (NAMBLEX) at Mace Head in summer 2002, are presented and put into the context of marine, boundary-layer chemistry. A suite of other chemical parameters (NO, NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis frequencies and meteorological measurements, are used to present a detailed analysis of the role of peroxy radicals in tropospheric oxidation cycles and ozone formation. Under the range of conditions encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal cycles showed an asymmetric shape typically shifted to the afternoon. Using a box model based on the master chemical mechanism the average model measurement agreement was 2.5 across the campaign. The addition of halogen oxides to the model increases the level of model/measurement agreement, apparently by respeciation of HOx. A good correlation exists between j(HCHO).[HCHO] and the peroxy radicals indicative of the importance of HCHO in the remote atmosphere as a HOx source, particularly in the afternoon. The peroxy radicals showed a strong dependence on [NO2] with a break point at 0.1 ppbv, where the radicals increased concomitantly with the reactive VOC loading, this is a lower value than seen at representative urban campaigns. The HO2/(HO2+ΣRO2) ratios are dependent on [NOx] ranging between 0.2 and 0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-alkene chemistry to night-time peroxy radical production was shown to be on average 59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h-1. The ozone production rate was strongly dependent on [NO] having linear sensitivity (dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) (the in-situ net photochemical rate of ozone production/destruction) will be strongly sensitive in the marine boundary layer to small changes in [NO] which has ramifications for changing NOx loadings in the European continental boundary layer.


2001 ◽  
Vol 106 (D18) ◽  
pp. 20833-20846 ◽  
Author(s):  
Maria Dolores Andrés Hernández ◽  
Jörn Burkert ◽  
Lars Reichert ◽  
Dirk Stöbener ◽  
Julian Meyer-Arnek ◽  
...  

2005 ◽  
Vol 5 (6) ◽  
pp. 12313-12371 ◽  
Author(s):  
Z. L. Fleming ◽  
P. S. Monks ◽  
A. R. Rickard ◽  
D. E. Heard ◽  
W. J. Bloss ◽  
...  

Abstract. Peroxy radical (HO2+ΣRO2) measurements, using the PEroxy Radical Chemical Amplification (PERCA) technique at the North Atlantic Marine Boundary Layer EXperiment (NAMBLEX) at Mace Head in summer 2002, are presented and put into the context of marine, boundary-layer chemistry. A suite of other chemical parameters (NO, NO2, NO3, CO, CH4, O3, VOCs, peroxides), photolysis frequencies and meteorological measurements, are used to present a detailed analysis of the role of peroxy radicals in tropospheric oxidation cycles and ozone formation. Under the range of conditions encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal cycles showed an asymmetric shape typically shifted to the afternoon. Using a box model based on the master chemical mechanism the average model measurement agreement was 2.5 across the campaign. The addition of halogen oxides to the model increases the level of model/measurement agreement, apparently by respeciation of HOx. A good correlation exists between j(HCHO).[HCHO] and the peroxy radicals indicative of the importance of HCHO in the remote atmosphere as a HOx source, particularly in the afternoon. The peroxy radicals showed a strong dependence on [NOx] with a break point at 0.1 ppbv, where the radicals increased concomitantly with the reactive VOC loading, this is a lower value than seen at representative urban campaigns. The HO2/(HO2+ΣRO2) ratios are dependent on [NOx] ranging between 0.2 and 0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-alkene chemistry to night-time peroxy radical production was shown to be on average 59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h−1. The ozone production rate was strongly dependent on [NO] having linear sensitivity (dln(P(O3))/dln(NO)=1.0). The results imply that the N(O3) (the in-situ net photochemical rate of ozone production/destruction) will be strongly sensitive in the marine boundary layer to small changes in [NO] which has ramifications for changing NOx loadings in the European continental boundary layer.


2008 ◽  
Vol 8 (4) ◽  
pp. 16643-16692 ◽  
Author(s):  
R. Sommariva ◽  
H. D. Osthoff ◽  
S. S. Brown ◽  
T. S. Bates ◽  
T. Baynard ◽  
...  

Abstract. This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5) in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM) was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS) in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average. The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5 (γN2O5)>1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15%) of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS).


2021 ◽  
Author(s):  
Jessica Mary Burger ◽  
Julie Granger ◽  
Emily Joyce ◽  
Meredith Galanter Hastings ◽  
Kurt Angus McDonald Spence ◽  
...  

Abstract. Atmospheric nitrate originates from the oxidation of nitrogen oxides (NOx = NO + NO2) and impacts both tropospheric chemistry and climate. NOx sources, cycling, and NOx to nitrate formation pathways are poorly constrained in remote marine regions, especially the Southern Ocean where pristine conditions serve as a useful proxy for the preindustrial atmosphere. Here, we measured the isotopic composition (δ15N and δ18O) of atmospheric nitrate in coarse-mode (> 1 μm) aerosols collected in the summertime marine boundary layer of the Atlantic Southern Ocean from 34.5° S to 70° S, and across the northern edge of the Weddell Sea. The δ15N-NO3− decreased with latitude from −2.7 ‰ to −43.1 ‰. The decline in δ15N with latitude is attributed to changes in the dominant NOx sources: lightning at the low latitudes, oceanic alkyl nitrates at the mid latitudes, and photolysis of nitrate in snow at the high latitudes. There is no evidence of any influence from anthropogenic NOx sources or equilibrium isotopic fractionation. Using air mass back trajectories and an isotope mixing model, we calculate that oceanic alkyl nitrate emissions have a δ15N signature of −22.0 ‰ ± 7.5 ‰. Given that measurements of alkyl nitrate contributions to remote nitrogen budgets are scarce, this may be a useful tracer for detecting their contribution in other oceanic regions. The δ18O-NO3− was always less than 70 ‰, indicating that daytime processes involving OH are the dominant NOx oxidation pathway during summer. Unusually low δ18O-NO3− values (less than 31 ‰) were observed at the western edge of the Weddell Sea. The air mass history of these samples indicates extensive interaction with sea ice covered ocean, which is known to enhance peroxy radical production. The observed low δ18O-NO3− is therefore attributed to increased exchange of NO with peroxy radicals, which have a low δ18O, relative to ozone, which has a high δ18O. This study reveals that the mid- and high-latitude surface ocean may serve as a more important NOx source than previously thought, and that the ice-covered surface ocean impacts the reactive nitrogen budget as well as the oxidative capacity of the marine boundary layer.


2020 ◽  
Vol 20 (9) ◽  
pp. 5811-5835 ◽  
Author(s):  
Iris Thurnherr ◽  
Anna Kozachek ◽  
Pascal Graf ◽  
Yongbiao Weng ◽  
Dimitri Bolshiyanov ◽  
...  

Abstract. Stable water isotopologues (SWIs) are useful tracers of moist diabatic processes in the atmospheric water cycle. They provide a framework to analyse moist processes on a range of timescales from large-scale moisture transport to cloud formation, precipitation and small-scale turbulent mixing. Laser spectrometric measurements on research vessels produce high-resolution time series of the variability of the water vapour isotopic composition in the marine boundary layer. In this study, we present a 5-month continuous time series of such ship-based measurements of δ2H and δ18O from the Antarctic Circumnavigation Expedition (ACE) in the Atlantic and the Southern Ocean in the time period from November 2016 to April 2017. We analyse the drivers of meridional SWI variations in the marine boundary layer across diverse climate zones in the Atlantic and Southern Ocean using Lagrangian moisture source diagnostics and relate vertical SWI differences to near-surface wind speed and ocean surface state. The median values of δ18O, δ2H and deuterium excess during ACE decrease continuously from low to high latitudes. These meridional SWI distributions reflect climatic conditions at the measurement and moisture source locations, such as air temperature, specific humidity and relative humidity with respect to sea surface temperature. The SWI variability at a given latitude is highest in the extratropics and polar regions with decreasing values equatorwards. This meridional distribution of SWI variability is explained by the variability in moisture source locations and its associated environmental conditions as well as transport processes. The westward-located moisture sources of water vapour in the extratropics are highly variable in extent and latitude due to the frequent passage of cyclones and thus widen the range of encountered SWI values in the marine boundary layer. Moisture loss during transport further contributes to the high SWI variability in the extratropics. In the subtropics and tropics, persistent anticyclones lead to well-confined narrow easterly moisture source regions, which is reflected in the weak SWI variability in these regions. Thus, the expected range of SWI signals at a given latitude strongly depends on the large-scale circulation. Furthermore, the ACE SWI time series recorded at 8.0 and 13.5 m above the ocean surface provide estimates of vertical SWI gradients in the lowermost marine boundary layer. On average, the vertical gradients with height found during ACE are -0.1‰m-1 for δ18O, -0.5‰m-1 for δ2H and 0.3 ‰ m−1 for deuterium excess. Careful calibration and post-processing of the SWI data and a detailed uncertainty analysis provide a solid basis for the presented gradients. Using sea spray concentrations and sea state conditions, we show that the vertical SWI gradients are particularly large during high wind speed conditions with increased contribution of sea spray evaporation or during low wind speed conditions due to weak vertical turbulent mixing. Although further SWI measurements at a higher vertical resolution are required to validate these findings, the simultaneous SWI measurements at several heights during ACE show the potential of SWIs as tracers for vertical mixing and sea spray evaporation in the lowermost marine boundary layer.


2020 ◽  
Author(s):  
Swaleha Inamdar ◽  
Liselotte Tinel ◽  
Rosie Chance ◽  
Lucy Jane Carpenter ◽  
Sabu Prabhakaran ◽  
...  

<p>Iodine chemistry plays an essential role in controlling the radiation budget by changing various atmospheric parameters. Iodine in the atmosphere is known to cause depletion of ozone via catalytic reaction cycles. It alters the atmospheric oxidation capacity, and lead to ultrafine particle formation that acts as potential cloud condensation nuclei. The ocean is the primary source of iodine; it enters the atmosphere through fluxes of gaseous reactive iodine species. At the ocean surface, seawater iodide reacts with tropospheric ozone (gas) to form inorganic iodine species in gaseous form. These species namely, hypoiodous acid (HOI) and molecular iodine (I<sub>2</sub>) quickly photolyse to release reactive iodine (I) in the atmosphere. This process acts as a significant sink for tropospheric ozone contributing to ~16% ozone loss throughout the troposphere. Reactive iodine released in the atmosphere undergoes the formation of iodine monoxide (IO) or higher oxides of iodine (I<sub>x</sub>O<sub>x</sub>) via self-recombination reactions. It is known that inorganic iodine fluxes (HOI and I<sub>2</sub>) contribute to 75% of the detected IO over the Atlantic Ocean. However, we did not observe this from ship-based MAX-DOAS studies between 2014-2017. At present, there are no direct observations of inorganic iodine (HOI; few for I<sub>2</sub>) and are estimated via empirical methods derived from the interfacial kinetic model by Carpenter et al. in 2013. Based on the kinetic model, estimation of HOI and I<sub>2</sub> fluxes depends on three parameters, namely, ozone concentration, surface iodide concentration, and the wind speed. This parameterisation for inorganic fluxes assumes a sea surface temperature (SST) of 293 K and has limiting wind speed conditions. Since the parameterisation conditions assumed SST of 293 K higher uncertainties due to errors in activation energy creeps in the estimation of HOI flux compared to I<sub>2</sub> as the flux of HOI is ~20 times greater than that of I<sub>2</sub>. For three consecutive expeditions in the Indian and Southern Ocean, we detected ~1 pptv of IO in the marine boundary layer. These levels are not explained by the calculated inorganic fluxes by using observed and predicted sea surface iodide concentrations. This method of iodine flux estimation is currently used in all global models, along with the MacDonald et al. 2014 iodide estimation method. Model output using these parameterisations have not been able to match the observed IO levels in the Indian and Southern Ocean region. This discrepancy suggests that the process of efflux of iodine to the atmosphere may not be fully understood, and the current parametrisation does not do justice to the observations. It also highlights that the flux of organic iodine may also play a role in observed IO levels, especially in the Indian Ocean region. A correlation of 0.7 was achieved above the 99% confidence limit for chlorophyll-a with observed IO concentration in this region. There is a need to carry more observations to improve the estimation technique of iodine sea-air flux thus improving model predictions of IO in the atmosphere.</p>


Sign in / Sign up

Export Citation Format

Share Document