scholarly journals On the global short-term forecasting of the ionospheric critical frequencyfoF2up to 5 hours in advance using neural networks

Radio Science ◽  
2005 ◽  
Vol 40 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
E. O. Oyeyemi ◽  
A. W. V. Poole ◽  
L. A. McKinnell
Data ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 43 ◽  
Author(s):  
Mesbaholdin Salami ◽  
Farzad Movahedi Sobhani ◽  
Mohammad Ghazizadeh

The databases of Iran’s electricity market have been storing large sizes of data. Retail buyers and retailers will operate in Iran’s electricity market in the foreseeable future when smart grids are implemented thoroughly across Iran. As a result, there will be very much larger data of the electricity market in the future than ever before. If certain methods are devised to perform quick search in such large sizes of stored data, it will be possible to improve the forecasting accuracy of important variables in Iran’s electricity market. In this paper, available methods were employed to develop a new technique of Wavelet-Neural Networks-Particle Swarm Optimization-Simulation-Optimization (WT-NNPSO-SO) with the purpose of searching in Big Data stored in the electricity market and improving the accuracy of short-term forecasting of electricity supply and demand. The electricity market data exploration approach was based on the simulation-optimization algorithms. It was combined with the Wavelet-Neural Networks-Particle Swarm Optimization (Wavelet-NNPSO) method to improve the forecasting accuracy with the assumption Length of Training Data (LOTD) increased. In comparison with previous techniques, the runtime of the proposed technique was improved in larger sizes of data due to the use of metaheuristic algorithms. The findings were dealt with in the Results section.


2021 ◽  
Author(s):  
Ronan Fablet ◽  
Bertrand Chapron ◽  
Lucas Drumetz ◽  
Etienne Memin ◽  
Olivier Pannekoucke ◽  
...  

<p>This paper addresses representation learning for the resolution of inverse problems  with geophysical dynamics. Among others, examples of inverse problems of interest include space-time interpolation, short-term forecasting, conditional simulation w.r.t. available observations, downscaling problems… From a methodological point of view, we rely on a variational data assimilation framework. Data assimilation (DA) aims to reconstruct the time evolution of some state given a series of  observations, possibly noisy and irregularly-sampled. Here, we investigate DA from a machine learning point of view backed by an underlying variational representation.  Using automatic differentiation tools embedded in deep learning frameworks, we introduce end-to-end neural network architectures for variational data assimilation. It comprises two key components: a variational model and a gradient-based solver both implemented as neural networks. A key feature of the proposed end-to-end learning architecture is that we may train the neural networks models using both supervised and unsupervised strategies. We first illustrate applications to the reconstruction of Lorenz-63 and Lorenz-96 systems from partial and noisy observations. Whereas the gain issued from the supervised learning setting emphasizes the relevance of groundtruthed observation dataset for real-world case-studies, these results also suggest new means to design data assimilation models from data. Especially, they suggest that learning task-oriented representations of the underlying dynamics may be beneficial. We further discuss applications to short-term forecasting and sampling design along with preliminary results for the reconstruction of sea surface currents from satellite altimetry data. </p><p>This abstract is supported by a preprint available online: https://arxiv.org/abs/2007.12941</p>


Sign in / Sign up

Export Citation Format

Share Document