scholarly journals Lithologic Controls on Focused Erosion and Intraplate Earthquakes in the Eastern Tennessee Seismic Zone

2018 ◽  
Vol 45 (18) ◽  
pp. 9569-9578 ◽  
Author(s):  
Sean F. Gallen ◽  
J. Ryan Thigpen
2017 ◽  
Author(s):  
Cortney Cameron ◽  
◽  
Enrico Brandmayr ◽  
Gordana Vlahovic

1988 ◽  
Vol 59 (4) ◽  
pp. 141-150 ◽  
Author(s):  
John. L. Sexton

Abstract An important aspect of seismogenesis concerns the role of preexisting faults and other structural features as preferred zones of weakness in determining the pattern of strain accumulation and seismicity. Reactivation of zones of weakness by present day stress fields may be the cause of many intraplate earthquakes. To understand the relation between reactivated structures and seismicity, it is necessary to identify structures which are properly oriented with respect to the present-day stress field so that reactivation can occur. The seismic reflection method is very useful for identifying and delineating structures, particularly in areas where the structures are buried as in the New Madrid seismic zone. Application of the seismic reflection method in widely separated locations within the New Madrid rift complex has resulted in successful detection and delineation of reactivated rift-related structures which are believed to be associated with earthquake activity. The purpose of this paper is to discuss results from seismic reflection profiling in the New Madrid rift complex. Reflection data from several surveys including USGS Vibroseis* surveys in the Reelfoot rift area reveal reactivated faults and other deep rift-related structures which appear to be associated with seismicity. High-resolution explosive and Mini-Sosie** reflection surveys on Reelfoot scarp and through the town of Cottonwood Grove, Tennessee, clearly show reverse faults in Paleozoic and younger rocks which have been reactivated to offset younger rocks. A Vibroseis survey in the Wabash Valley area of the New Madrid rift complex provides direct evidence for a few hundred feet of post-Pennsylvanian age reactivation of large-offset normal faults in Precambrian-age basement rocks. Several earthquake epicenters have been located in the vicinity of these structures. In the Rough Creek graben, Vibroseis reflection data provide clear evidence for reactivation of basement faults. The success of these reflection surveys shows that well-planned seismic reflection surveys must be included in any program seeking to determine the relationship between preexisting zones of weakness and seismicity of an area.


Sign in / Sign up

Export Citation Format

Share Document