Variations in horizontal density gradient forcing at the mouth of an estuary

Author(s):  
Glenn A. Cannon
2019 ◽  
Vol 70 (1) ◽  
pp. 41-56
Author(s):  
Steven J. Kaptein ◽  
Koen J. van de Wal ◽  
Leon P. J. Kamp ◽  
Vincenzo Armenio ◽  
Herman J. H. Clercx ◽  
...  

AbstractOne-dimensional models of exchange flows driven by horizontal density gradients are well known for performing poorly in situations with weak turbulent mixing. The main issue with these models is that the horizontal density gradient is usually imposed as a constant, leading to non-physically high stratification known as runaway stratification. Here, we propose two new parametrizations of the horizontal density gradient leading to one-dimensional models able to tackle strongly stratified exchange flows at high and low Schmidt number values. The models are extensively tested against results from laminar two-dimensional simulations and are shown to outperform the models using the classical constant parametrization for the horizontal density gradients. Four different flow regimes are found by exploring the parameter space defined by the gravitational Reynolds number Reg, the Schmidt number Sc, and the aspect ratio of the channel Γ. For small values of RegΓ, when diffusion dominates, all models perform well. However, as RegΓ increases, two clearly distinct regimes emerge depending on the Sc value, with an equally clear distinction of the performance of the one-dimensional models.


1989 ◽  
Vol 202 ◽  
pp. 1-16 ◽  
Author(s):  
J. E. Simpson ◽  
P. F. Linden

The adjustment under gravity of a fluid containing a horizontal density gradient is described.’ The fluid is initially at rest and the resulting motion is calculated as the flow accelerates, driven by the baroclinic density field. Two forms of the initial density distribution are considered. In the first the initial horizontal gradient is constant. A purely horizontal motion develops as the isopycnals rotate towards the horizontal. The vertical density gradient increases continually with time but the horizontal density gradient remains unchanged. The horizontal velocity has a uniform vertical shear, and the gradient Richardson number is constant in space and decreases monotonically with time to ½. The second density distribution consists of a piecewise constant gradient with a jump in the gradient along a vertical isopycnal. The density is continuous. In this case frontogenesis is predicted to occur on the isopycnal between the two constant-density-gradient regions, and the timescale for the formation of a front is determined. Laboratory experiments are reported which confirm the results of these calculations. In addition, lock exchange experiments have been carried out in which the horizontal mean gradient is represented by a series of step density differences separated by vertical gates.


Sign in / Sign up

Export Citation Format

Share Document