step density
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 12)

H-INDEX

23
(FIVE YEARS 3)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3303
Author(s):  
Martina Corso ◽  
Rodrigo E. Menchón ◽  
Ignacio Piquero-Zulaica ◽  
Manuel Vilas-Varela ◽  
J. Enrique Ortega ◽  
...  

Chiral graphene nanoribbons are extremely interesting structures due to their narrow band gaps and potential development of spin-polarized edge states. Here, we study their band structure on low work function silver surfaces. The use of a curved Ag single crystal provides, within the same sample, regions of disparate step structure and step density. Whereas the former leads to distinct azimuthal growth orientations of the graphene nanoribbons atop, the latter modulates the substrate’s work function and thereby the interface energy level alignment. In turn, we disclose the associated charge transfer from the substrate to the ribbon and assess its effect on the nanoribbon’s properties and the edge state magnetization.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Shova Neupane ◽  
Nicolás A. Rivas ◽  
Patricia Losada-Pérez ◽  
Jan D’Haen ◽  
Heshmat Noei ◽  
...  

AbstractDetrimental corrosion is an ever-concerning challenge for metals and alloys. One possible remedy is to apply organic corrosion inhibitors. Despite progress in molecular assembly and inhibitor research, better mechanistic insight on the molecular level is needed. Here we report on the behavior of well-defined artificial molecular interfaces created by micro-contact printing of thiol-inhibitor molecules and subsequent backfilling. The obtained heterogeneity and defects trigger localized dealloying-corrosion of well-defined Cu3Au surfaces. The stability of applied inhibitor molecules depends on alloy surface morphology and on intermolecular forces of the molecular layers. On extended terraces, dealloying preferentially starts at the boundary between areas composed of the two different chain-length inhibitor molecules. Inside of the areas hardly any nucleation of initial pits is visible. Step density strongly influences the morphology of the dealloying attack, while film heterogeneity avoids cracking and controls molecular-scale corrosion attack. The presented surface-science approach, moreover, will ultimately allow to verify the acting mechanisms of inhibitor-cocktails to develop recipes to stabilize metallic alloy surfaces.


Science ◽  
2021 ◽  
Vol 372 (6544) ◽  
pp. 847-852
Author(s):  
Qiaomu Yang ◽  
Yu-Heng Wang ◽  
Yusen Qiao ◽  
Michael Gau ◽  
Patrick J. Carroll ◽  
...  

The functionalization of methane, ethane, and other alkanes derived from fossil fuels is a central goal in the chemical enterprise. Recently, a photocatalytic system comprising [CeIVCl5(OR)]2− [CeIV, cerium(IV); OR, –OCH3 or –OCCl2CH3] was disclosed. The system was reportedly capable of alkane activation by alkoxy radicals (RO•) formed by CeIV–OR bond photolysis. In this work, we present evidence that the reported carbon-hydrogen (C–H) activation of alkanes is instead mediated by the photocatalyst [NEt4]2[CeCl6] (NEt4+, tetraethylammonium), and RO• are not intermediates. Spectroscopic analyses and kinetics were investigated for C–H activation to identify chlorine radical (Cl•) generation as the rate-limiting step. Density functional theory calculations support the formation of [Cl•][alcohol] adducts when alcohols are present, which can manifest a masked RO• character. This result serves as an important cautionary note for interpretation of radical trapping experiments.


2021 ◽  
pp. 1-5
Author(s):  
A. O. Dmitrienko ◽  
A. A. Konnov ◽  
M. S. Klenov

The crystal structure of a novel high-energy density material 3-[(3,4-dinitro-1H-pyrazol-1-yl)-NNO-azoxy]-4-nitro-1,2,5-oxadiazole C5HN9O8 was determined and refined using laboratory powder diffraction data. The diffraction data and database analysis were insufficient to distinguish two candidate structures from the solution step. Density functional theory with periodic boundary conditions optimizations were used to choose the correct one. 3-[(3,4-Dinitro1H-pyrazol-1-yl)-NNO-azoxy]-4-nitro-1,2,5-oxadiazole crystallizes in space group Pbca with a = 8.3104(2) Å, b = 14.2198(5) Å, c = 19.4264(7) Å, V = 2295.66(14) Å3. The molecular conformation contains a weak intramolecular hydrogen bond C–H⋯O–N, and the structure is dominated by weak O⋯π and O⋯O contacts.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1084
Author(s):  
Hua Yang ◽  
Jing Ru Zhang ◽  
Wentao Cao ◽  
Jin Zhen ◽  
Ji Hong Wu

Constructing multi-dimensional hierarchical superstructures has been, for a longtime, regarded as a promising strategy for modifying the physiochemical properties of nanomaterials. Guided by this rule, this work reports the synthesis of hierarchical superstructures of Ag-Ag2O-AgO nanoparticles (HSANs) using a convenient and surfactant-less photochemical method under 254 nm UV-irradiation. The formation of the HSANs superstructures is dominated by screw-dislocation-driven growth mechanism at low supersaturation condition. The structural evolution of the HSANs superstructures has been systematically investigated. The average size of the HSANs superstructures increased with prolonged 254 nm UV-irradiation. The step density on the superstructure surfaces also increased along with the 254 nm UV-irradiation time.


2020 ◽  
Vol 63 (15-18) ◽  
pp. 1558-1568
Author(s):  
Tycho Roorda ◽  
Sabine V. Auras ◽  
Ludo B. F. Juurlink

AbstractUnderstanding heterogeneous catalysis at the atomic level requires detailed knowledge of the reactivity of different surface sites toward specific bond breaking and bond making events. We illustrate a new method in such investigations. We use a macroscopically curved Pt single crystal containing a large variation in density of highly kinked steps of two different chiralities. Scanning tunneling microscopy maps the entire range of surface structures present on the 31° section surrounding the Pt(111) apex. Whereas most of the surface shows the expected characteristic arrays of parallel steps, hexagonally-shaped, single-atom deep pits remain after cleaning procedures near the apex. Their orientation is indicative of the different chiralities present on the two sides of the crystal’s apex. These unintended defects locally raise the surface defect concentration, but are of little consequence to subsequent reactivity measurements for $$\text {D}_2$$ D 2 dissociation and H–D exchange as probed by supersonic molecular beam techniques. We quantify absolute elementary dissociation and relative isotopic exchange rates across the surface with high spatial resolution. At low incident energies, elementary dissociation of the homonuclear isotoplogues is dominated by the kinked steps. H–D exchange kinetics depend also mostly linearly on step density. The changing ratio of D2 dissociation to H–D formation, however, suggests that anisotropic diffusion of H(D) atoms is of influence to the measured HD production rate.


2020 ◽  
Vol 6 (21) ◽  
pp. eaay9322 ◽  
Author(s):  
Pablo Llombart ◽  
Eva G. Noya ◽  
Luis G. MacDowell

With climate modeling predicting a raise of at least 2°C by year 2100, the fate of ice has become a serious concern, but we still do not understand how ice grows (or melts). In the atmosphere, crystal growth rates of basal and prism facets exhibit an enigmatic temperature dependence and crossover up to three times in a range between 0° and −40°. Here, we use large-scale computer simulations to characterize the ice surface and identify a sequence of previously unidentified phase transitions on the main facets of ice crystallites. Unexpectedly, we find that as temperature is increased, the crystal surface transforms from a disordered phase with proliferation of steps to a smooth phase with small step density. This causes the anomalous increase of step free energies and provides the long sought explanation for the enigmatic crossover of snow crystal growth rates found in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document