Hydrodynamic Models
Recently Published Documents


TOTAL DOCUMENTS

685
(FIVE YEARS 234)

H-INDEX

50
(FIVE YEARS 12)

2021 ◽  
Author(s):  
Denys Grytsai ◽  
Petro Shtefura ◽  
Vadym Dodukh

Abstract A methodology has been developed that, in conditions of limited geological and production data, ensures the integration of petrophysical, geological, and hydrodynamic models as components of a permanent 3D model, establishing physical relationships between parameters that describe the entire system. In the proposed method, the modelling is based on the results of the interpretation of continuous shale volume and porosity curves. Based on the analysis of core data, the multi-vector physical correlations with other parameters are made. To distinguish the reservoirs and non-reservoirs, the cut-off values of shale volume are defined; to exclude tight reservoirs with no filtration, the cut-off values of porosity are set. Using the Winland R35 method the radius of the pore throat is computed, allowing dividing the reservoirs into classes. For each class of reservoirs, the permeability vs porosity dependence is determined, and the Wright-Woody-Johnson method allows deriving equations for the bound water content. A system of configured workflows has been developed and allows automating re-modelling and simplifying its history matching. This technique was successfully applied to several 3D models of gas condensate fields, which, with a significant drilling level on the areas and a long development history, are characterized by limited geological and production data. Workflows System together with the proposed approach allowed simplifying the history matching process by splitting it into several stages. At each stage, depending on the type of input data, various parameters were matched (production, reservoir and wellhead pressures, etc.). Due to cross-functional correlation of all components, the model has significantly reduced the uncertainty parameters and allowed a detailed history matching of the development history for the entire well stock. The results obtained were tested by several geological and technological measures, including drilling new wells, and showed high convergence with the forecast indicators. The proposed approach to modelling and history matching in conditions of limited geological and production data allows: – ensuring integration and correlation of petrophysical, geological, and hydrodynamic models as components of a permanent 3D model; – automating and simplifying the modelling, history matching, and updating a model; – improving the quality of parameters’ matching results.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hauke Blanken ◽  
Caterina Valeo ◽  
Charles Hannah ◽  
Usman T. Khan ◽  
Tamás Juhász

This paper proposes a fuzzy number—based framework for quantifying and propagating uncertainties through a model for the trajectories of objects drifting at the ocean surface. Various sources of uncertainty that should be considered are discussed. This model is used to explore the effect of parameterizing direct wind drag on the drifting object based on its geometry, and using measured winds to parameterize shear and rotational dynamics in the ocean surface currents along with wave-driven circulation and near-surface wind shear. Parameterizations are formulated in a deterministic manner that avoids the commonly required specification of empirical leeway coefficients. Observations of ocean currents and winds at Ocean Station Papa in the northeast Pacific are used to force the trajectory model in order to focus on uncertainties arising from physical processes, rather than uncertainties introduced by the use of atmospheric and hydrodynamic models. Computed trajectories are compared against observed trajectories from five different types of surface drifters, and optimal combinations of forcing parameterizations are identified for each type of drifter. The model performance is assessed using a novel skill metric that combines traditional assessment of trajectory accuracy with penalties for overestimation of uncertainty. Comparison to the more commonly used leeway method shows similar performance, without requiring the specification of empirical coefficients. When using optimal parameterizations, the model is shown to correctly identify the area in which drifters are expected to be found for the duration of a seven day simulation.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3202
Author(s):  
Sebastián Cedillo ◽  
Esteban Sánchez-Cordero ◽  
Luis Timbe ◽  
Esteban Samaniego ◽  
Andrés Alvarado

Due to the presence of boulders and different morphologies, mountain rivers contain various resistance sources. To correctly simulate river flow using 1-D hydrodynamic models, an accurate estimation of the flow resistance is required. In this article, a comparison between the physical roughness parameter (PRP) and effective roughness coefficient (ERC) is presented for three of the most typical morphological configurations in mountain rivers: cascade, step-pool, and plane-bed. The PRP and its variation were obtained through multiple measurements of field variables and an uncertainty analysis, while the ERC range was derived with a GLUE procedure implemented in HEC-RAS, a 1-D hydrodynamic model. In the GLUE experiments, two modes of the Representative Friction Slope Method (RFSM) between two cross-sections were tested, including the variation in the roughness parameter. The results revealed that the RFSM effect was limited to low flows in cascade and step-pool. Moreover, when HEC-RAS selected the RSFM, only acceptable results were presented for plane-bed. The difference between ERC and PRP depended on the flow magnitude and the morphology, and as shown in this study, when the flow increased, the ERC and PRP ranges approached each other and even overlapped in cascade and step-pool. This research aimed to improve the roughness value selection process in a 1-D model given the importance of this parameter in the predictability of the results. In addition, a comparison was presented between the results obtained with the numerical model and the values calculated with the field measurements


2021 ◽  
Author(s):  
Artur Safin ◽  
Damien Bouffard ◽  
Firat Ozdemir ◽  
Cintia L. Ramón ◽  
James Runnalls ◽  
...  

Abstract. We present a Bayesian inference for a three-dimensional hydrodynamic model of Lake Geneva with stochastic weather forcing and high-frequency observational datasets. This is achieved by coupling a Bayesian inference package, SPUX, with a hydrodynamics package, MITgcm, into a single framework, SPUX-MITgcm. To mitigate uncertainty in the atmospheric forcing, we use a smoothed particle Markov chain Monte Carlo method, where the intermediate model state posteriors are resampled in accordance with their respective observational likelihoods. To improve the assimilation of remotely sensed temperature, we develop a bi-directional Long Short-Term Memory (Bi-LSTM) neural network to estimate lake skin temperature from a history of hydrodynamic bulk temperature predictions and atmospheric data. This study analyzes the benefit and costs of such state of the art computationally expensive calibration and assimilation method for lakes.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3102
Author(s):  
Hu Xu ◽  
Zhenhua Wang ◽  
Wenhao Li ◽  
Qiuliang Wang

Due to their convenience, water measuring structures have become an important means of measuring water in irrigation canal systems However, relevant research on upstream and downstream water-depth monitoring point locations is scarce. Our study aims to determine the functional relationship between the locations of the water-depth monitoring points and the opening width of the sluice. We established 14 trunk-channel and branch-channel hydrodynamic models. The locations of the water-depth monitoring points for the upstream and downstream reaches and their hydraulic characteristics were assessed using a numerical simulation and hydraulic test. The results showed that the locations of the upstream and downstream water-depth monitoring points were, respectively, 16.26 and 15.51 times the width of the sluice. The average error between the calculated flow rate and the simulated value was 14.37%; the average error between the flow rates calculated by the modified and the simulated values was 3.36%. To further verify the accuracy of the modified discharge calculation formula, by comparing the measured values, we reduced the average error of the modified formula by 19.29% compared with the standard formula. This research provides new insights into optimizing water measurements in irrigation canal systems. The results provide an engineering basis for the site selection of water-depth monitoring points that is suitable to be widely applied in the field.


2021 ◽  
pp. 127150
Author(s):  
Javier Senent-Aparicio ◽  
Adrián López-Ballesteros ◽  
Anders Nielsen ◽  
Dennis Trolle

2021 ◽  
pp. 104088
Author(s):  
Xiaohe Zhang ◽  
Cathleen E. Jones ◽  
Talib Oliver Cabrera ◽  
Marc Simard ◽  
Sergio Fagherazzi

Author(s):  
Tao Xiang ◽  
Denis Istrati

Given the documented wave-induced damage of elevated coastal decks during extreme natural hazards (e.g. hurricanes) in the last two decades, it is of utmost significance to decipher the wave-structure-interaction of complex deck geometries and quantify the associated loads. Therefore, this study focuses on the assessment of solitary wave impact on open-girder decks that allow the air to escape from the sides. To this end, an arbitrary Lagrangian-Eulerian (ALE) numerical method with a multi-phase compressible formulation is used for the development of three-dimensional hydrodynamic models, which are validated against a large-scale experimental dataset of a coastal deck. Using the validated model as a baseline, a parametric investigation of different deck geometries with a varying number of girders Ng and three different widths, was conducted. The results reveal that the Ng of a superstructure has a complex role and that for small wave heights the horizontal and uplift forces increase with the Ng, while for large waves the opposite happens. If the Ng is small the wave particles accelerate after the initial impact on the offshore girder leading to a more violent slamming on the onshore part of the deck and larger pressures and forces, however, if Ng is large then unsynchronized eddies are formed in each chamber, which dissipate energy and apply out-of-phase pressures that result in multiple but weaker impacts on the deck. The decomposition of the total loads into slamming and quasi-static components, reveals surprisingly consistent trends for all the simulated waves, which facilitates the development of predictive load equations. These new equations, which are a function of Ng and are limited by the ratio of the wavelength to the deck width, provide more accurate predictions than existing empirical methods, and are expected to be useful to both engineers and researchers working towards the development of resilient coastal infrastructure.


2021 ◽  
Vol 25 (10) ◽  
pp. 5493-5516
Author(s):  
Francesco Fatone ◽  
Bartosz Szeląg ◽  
Adam Kiczko ◽  
Dariusz Majerek ◽  
Monika Majewska ◽  
...  

Abstract. Knowledge of the variability of the hydrograph of outflow from urban catchments is highly important for measurements and evaluation of the operation of sewer networks. Currently, hydrodynamic models are most frequently used for hydrograph modeling. Since a large number of their parameters have to be identified, there may be problems at the calibration stage. Hence, sensitivity analysis is used to limit the number of parameters. However, the current sensitivity analytical methods ignore the effect of the temporal distribution and intensity of precipitation in a rainfall event on the catchment outflow hydrograph. This article presents a methodology of constructing a simulator of catchment outflow hydrograph parameters (volume and maximum flow). For this purpose, uncertainty analytical results obtained with the use of the GLUE (generalized likelihood uncertainty estimation) method were used. A novel analysis of the sensitivity of the hydrodynamic catchment models was also developed, which can be used in the analysis of the operation of stormwater networks and underground infrastructure facilities. Using the logistic regression method, an innovative sensitivity coefficient was proposed to study the impact of the variability of the parameters of the hydrodynamic model depending on the distribution of rainfall, the origin of rainfall (on the Chomicz scale), and the uncertainty of the estimated simulator coefficients on the parameters of the outflow hydrograph. The developed model enables the analysis of the impact of the identified SWMM (Storm Water Management Model) parameters on the runoff hydrograph, taking into account local rainfall conditions, which have not been analyzed thus far. Compared with the currently developed methods, the analyses included the impact of the uncertainty of the identified coefficients in the logistic regression model on the results of the sensitivity coefficient calculation. This aspect has not been taken into account in the sensitivity analytical methods thus far, although this approach evaluates the reliability of the simulation results. The results indicated a considerable influence of rainfall distribution and intensity on the sensitivity factors. The greater the intensity and rainfall were, the lower the impact of the identified hydrodynamic model parameters on the hydrograph parameters. Additionally, the calculations confirmed the significant impact of the uncertainty of the estimated coefficient in the simulator on the sensitivity coefficients. In the context of the sensitivity analysis, the obtained results have a significant effect on the interpretation of the relationships obtained. The approach presented in this study can be widely applied at the model calibration stage and for appropriate selection of hydrographs for identification and validation of model parameters. The results of the calculations obtained in this study indicate the suitability of including the origin of rainfall in the sensitivity analysis and calibration of hydrodynamic models, which results from the different sensitivities of models for normal, heavy, and torrential rain types. In this context, it is necessary to first divide the rainfall data by origin, for which analyses will be performed, including sensitivity analysis and calibration. Considering the obtained results of the calculations, at the stage of identifying the parameters of hydrodynamic models and their validation, precipitation conditions should be included because, for the precipitation caused by heavy rainfall, the values of the sensitivity coefficients were much lower than for torrential ones. Taking into account the values of the sensitivity coefficients obtained, the calibration of the models should not only cover episodes with high rainfall intensity, since this may lead to calculation errors at the stage of applying the model in practice (assessment of the stormwater system operating conditions, design of reservoirs and flow control devices, green infrastructure, etc.).


Sign in / Sign up

Export Citation Format

Share Document