Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike

1977 ◽  
Vol 82 (14) ◽  
pp. 2040-2044 ◽  
Author(s):  
Ping Cheng ◽  
W. J. Minkowycz
2008 ◽  
Vol 273-276 ◽  
pp. 796-801
Author(s):  
L.B.Y. Aldabbagh ◽  
Mohsen Sharifpur ◽  
Mahdi Zamani

A set of experiments is done to study the phenomenon of free convection heat transfer from an isothermal vertical flat plate embedded in a saturated porous medium in steady state condition. The porous medium consisting of 0.8 cm spheres. The aspect ratio of the isothermal flat plate, H/W, is equal to 2. Where H is the height and W is the width of the vertical plate. The investigations were cared out for Darcy modified Rayleigh number between 100 and 500. The results indicate that heat transfer increases linearly with increasing the Darcy modified Rayleigh number. In addition, the present results are in good agreement with the higher-order boundary layer theory obtained by Cheng and Hsu [1].


Author(s):  
S. Prasanna ◽  
S. P. Venkateshan

The role of conduction and surface radiation on laminar free convection heat transfer from a heated vertical flat plate has been studied. Steady state experiments have been conducted on vertical flat plates, of different thermal conductivities and surface emissivities, with an embedded heater and the results have been reported in [1]. The plate dimensions were held fixed in all the experiments. An effort is made here to identify important parameters that are involved in wall conduction - free convection - radiation interaction phenomena. The convective heat transfer from a vertical surface is affected by the surface temperature of the plate and its variations which is influenced by two other modes of heat transfer, conduction within the plate and surface radiation. Hence, the present paper attempts to understand the interaction phenomenon between the three modes of heat transfer and explain the temperature distributions within the plate, observed both experimentally and in numerical simulations. It is found that radiation is very important as it significantly affects the temperature distribution along the plate.


Sign in / Sign up

Export Citation Format

Share Document