The upper ocean internal wave field: Influence of the surface and mixed layer

1987 ◽  
Vol 92 (C5) ◽  
pp. 5035 ◽  
Author(s):  
Murray D. Levine
2016 ◽  
Vol 46 (8) ◽  
pp. 2335-2350 ◽  
Author(s):  
Dirk Olbers ◽  
Carsten Eden

AbstractTwo surface waves can interact to produce an internal gravity wave by nonlinear resonant coupling. The process has been called spontaneous creation (SC) because it operates without internal waves being initially present. Previous studies have shown that the generated internal waves have high frequency close to the local Brunt–Väisälä frequency and wavelengths that are much larger than those of the participating surface waves, and that the spectral transfer rate of energy to the internal wave field is small compared to other generation processes. The aim of the present analysis is to provide a global map of the energy transfer into the internal wave field by surface–internal wave interaction, which is found to be about 10−3 TW in total, based on a realistic wind-sea spectrum (depending on wind speed), mixed layer depths, and stratification below the mixed layer taken from a state-of-the-art numerical ocean model. Unlike previous calculations of the spectral transfer rate based on a vertical mode decomposition, the authors use an analytical framework that directly derives the energy flux of generated internal waves radiating downward from the mixed layer base. Since the radiated waves are of high frequency, they are trapped and dissipated in the upper ocean. The radiative flux thus feeds only a small portion of the water column, unlike in cases of wind-driven near-inertial waves that spread over the entire ocean depth before dissipating. The authors also give an estimate of the interior dissipation and implied vertical diffusivities due to this process. In an extended appendix, they review the modal description of the SC interaction process, completed by the corresponding counterpart, the modulation interaction process (MI), where a preexisting internal wave is modulated by a surface wave and interacts with another one. MI establishes a damping of the internal wave field, thus acting against SC. The authors show that SC overcomes MI for wind speeds exceeding about 10 m s−1.


1978 ◽  
Vol 88 (2) ◽  
pp. 289-308 ◽  
Author(s):  
T. H. Bell

Turbulent motions within the wind-mixed layer, which is advected by near-surface inertial oscillations, excite internal gravity waves in the underlying ocean layers. Momentum transport in the radiated wave field results in a drag force on the inertial currents. Because the magnitude of the inertial currents is large compared with the turbulence intensity, the resultant rate of dissipation of inertial oscillation energy is approximately equal to the energy flux in the radiated wave field. Using linear internal wave theory, asymptotic results are derived for the energy flux in terms of the Brunt-Väisälä frequency N below the mixed layer, the magnitude U0 of the inertial current, the integral length scale l of the mixed-layer turbulence and the mean-square displacement 〈ζ20〉 of the base of the mixed layer. For representative conditions, we estimate an energy flux of 1-10 erg/cm2 s into relatively short (wavelength of order 2πU0/N) high frequency (of order, but less than, N) internal waves. The resultant decay times for inertial oscillation energy range from a day to a week or so, in agreement with reported observations on the decay of inertial oscillations in the upper ocean. The estimated energy flux is comparable in magnitude to estimates for other internal wave generation mechanisms, indicating that, in addition to being a significant sink of inertial energy, this process may locally represent a significant source of internal wave energy in the open ocean.


2005 ◽  
Vol 50 (4) ◽  
pp. 1326-1333 ◽  
Author(s):  
Javier Vidal ◽  
Xavier Casamitjana ◽  
Jordi Colomer ◽  
Teresa Serra

Sign in / Sign up

Export Citation Format

Share Document