Estimates of Energy Dissipation Rates in the Three-Dimensional Deep Ocean Internal Wave Field

2005 ◽  
Vol 61 (1) ◽  
pp. 123-127 ◽  
Author(s):  
Michio Watanabe ◽  
Toshiyuki Hibiya
2017 ◽  
Vol 47 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Takashi Ijichi ◽  
Toshiyuki Hibiya

AbstractIn the proximity of mixing hotspots in the deep ocean, the observed internal wave spectra are usually distorted from the Garrett–Munk (GM) spectrum and are characterized by the high energy level E as well as a shear–strain ratio Rω quite different from that of the GM spectrum. On the basis of the eikonal theoretical model, Ijichi and Hibiya (IH) recently proposed the revised finescale parameterization of turbulent dissipation rates in the distorted internal wave field, although the vertical velocity associated with background internal waves and the strict WKB scale separation, for example, were not taken into account. To see the effects of such simplifying assumptions on the revised parameterization, this study carries out a series of eikonal calculations for energy transfer through various internal wave spectra distorted from the GM. Although the background vertical velocity and the strict WKB scale separation somewhat affect the calculated energy transfer rates, their parameter dependence is confirmed as expected; the calculated energy transfer rates ε follow the basic scaling ε ∝ E2N2f with the local buoyancy frequency N and the local inertial frequency f and exhibit strong Rω dependence quite similar to that predicted by IH.


2013 ◽  
Vol 721 ◽  
pp. 1-27 ◽  
Author(s):  
M.-P. Lelong ◽  
E. Kunze

AbstractThe interaction of barotropic tidal currents and baroclinic geostrophic eddies is considered theoretically and numerically to determine whether energy can be transferred to an internal wave field by this process. The eddy field evolves independently of the tide, suggesting that it acts catalytically in facilitating energy transfer from the barotropic tide to the internal wave field, without exchanging energy with the other flow components. The interaction is identically zero and no waves are generated when the barotropic tidal current is horizontally uniform. Optimal internal wave generation occurs when the scales of tide and eddy fields satisfy resonant conditions. The most efficient generation is found if the tidal current horizontal scale is comparable to that of the eddies, with a weak maximum when the scales differ by a factor of two. Thus, this process is not an effective mechanism for internal wave excitation in the deep ocean, where tidal current scales are much larger than those of eddies, but it may provide an additional source of internal waves in coastal areas where horizontal modulation of the tide by topography can be significant.


2021 ◽  
Author(s):  
Till Baumann ◽  
Ilker Fer ◽  
Kirstin Schulz ◽  
Volker Mohrholz ◽  
Janin Schaffer ◽  
...  

<p>Ocean mixing governs the vertical exchange of matter, heat and salt in the water column. In the Arctic Ocean, the vertical transport of heat due to turbulent mixing is ultimately coupled to the sea-ice cover, with immediate and far-reaching impacts on the climate and ecosystem. A detailed understanding and quantification of turbulent mixing is crucial to assess and predict the state of the changing Arctic Ocean. However, direct observations of turbulent mixing are complicated, expensive and sparse.</p><p>Finescale parameterization of turbulent energy dissipation allows for the quantification of mixing based on standard hydrographic observations such as velocity and density profiles. This method is based on the assumption that energy dissipation is achieved exclusively by cascading energy from large, observable scales to small scales by wave-to-wave interactions in the internal wave field, which in turn can be related to vertical diffusivity and hence turbulent fluxes. While the finescale parameterization is proved to be reliable at mid-latitudes, the Arctic Ocean internal wave field is distinct from the canonical mid-latitude spectrum and the applicability of the parameterization is not certain. Furthermore, in the historically quiescent Arctic, the application of finescale parameterization suffers from a generally low signal to noise ratio and processes violating the assumptions in the parameterization, such as double diffusion.  During the year-long MOSAiC expedition, both standard observations as well as specialized microstructure measurements were carried out continuously. We analyse dissipation rate and stratification measurements (from an MSS90L profiler) and 8-m vertical resolution current measurements (from a 75 kHz RDI acoustic Doppler current profiler) in the depth range from 70 -198 m, in the absence of thermohaline staircases or double-diffusive intrusions. Although the range of dissipation measurements is limited and spans 1e<sup>-11</sup> W kg<sup>-1</sup> to 8.8e<sup>-7</sup> W kg<sup>-1</sup>, direct comparisons between in-situ observations of dissipation rate and finescale parameterization provide a detailed insight into the capabilities and limitations of this method in various meteorological, oceanographic and geographic conditions. The aim is to provide guidance in how far standard oceanographic observations may be utilized to quantify mixing in past, current and future states of the Arctic Ocean.</p>


2014 ◽  
Vol 31 (11) ◽  
pp. 2530-2543 ◽  
Author(s):  
Bruno Ferron ◽  
Florian Kokoszka ◽  
Herlé Mercier ◽  
Pascale Lherminier

AbstractA total of 96 finestructure and 30 microstructure full-depth vertical profiles were collected along the A25 Greenland–Portugal Observatoire de la Variabilité Interannuelle et Décennale en Atlantique Nord (OVIDE) hydrographic line in 2008. The microstructure of the horizontal velocity was used to calculate turbulent kinetic energy dissipation rates εvmp, where vmp refers to the vertical microstructure profiler. The lowest dissipation values (εvmp < 0.5 × 10−10 W kg−1) are found below 2000 m in the Iberian Abyssal Plain and in the center of the Irminger basin; the largest values (>5 × 10−10 W kg−1) are found in the main thermocline, around the Reykjanes Ridge, and in a 1000-m-thick layer above the bottom near 48°N. The finestructure of density was used to estimate isopycnal strain and that of the lowered acoustic Doppler current profiler to estimate the vertical shear of horizontal velocities. Strain and shear were used to estimate dissipation rates εG03 (Gregg et al.) associated with the internal wave field. The shear-to-strain ratio correction term of the finescale parameterization εG03 brings the fine- and microscale estimates of the dissipation rate into better agreement as Polzin et al. found. The latitude/buoyancy frequency term slightly improves the parameterization for weakly stratified waters. Correction term εG03 is consistent with εvmp within a factor of 4.5 over 95% of the profiles. This good consistency suggests that most of the turbulent activity recorded in this dataset is due to the internal wave field. The canonical globally averaged diffusivity value of order 10−4 m2 s−1 needed to maintain the global abyssal stratification (Munk) is only reached on the flank of the Reykjanes Ridge and in the region around 48°N.


Sign in / Sign up

Export Citation Format

Share Document