scholarly journals An integrated finite difference method for analyzing fluid flow in porous media

1976 ◽  
Vol 12 (1) ◽  
pp. 57-64 ◽  
Author(s):  
T. N. Narasimhan ◽  
P. A. Witherspoon
2014 ◽  
Author(s):  
Shafaruniza Mahadi ◽  
Farah Suraya Md Nasrudin ◽  
Faisal Salah ◽  
Zainal Abdul Aziz

2020 ◽  
Vol 61 ◽  
pp. C137-C151
Author(s):  
Jyothi Jose ◽  
Graeme Hocking ◽  
Duncan Farrow

We consider axisymmetric flow towards a point sink from a stratified fluid in a vertically confined aquifer. We present two approaches to solve the equations of flow for the linear density gradient case. Firstly, a series method results in an eigenfunction expansion in Whittaker functions. The second method is a simple finite difference method. Comparison of the two methods verifies the finite difference method is accurate, so that more complicated nonlinear, density stratification can be considered. Such nonlinear profiles cannot be considered with the eigenfunction approach. Interesting results for the case where the density stratification changes from linear to almost two-layer are presented, showing that in the nonlinear case there are certain values of flow rate for which a steady solution does not occur. References Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 9th ed. National Bureau of Standards, Washington, 1972. Bear, J. and Dagan, G. Some exact solutions of interface problems by means of the hodograph method. J. Geophys. Res. 69(8):1563–1572, 1964. doi:10.1029/JZ069i008p01563 Bear, J. Dynamics of fluids in porous media. Elsevier, New York, 1972. https://store.doverpublications.com/0486656756.html COMSOL Multiphysics. COMSOL Multiphysics Programming Reference Manual, version 5.3. https://doc.comsol.com/5.3/doc/com.comsol.help.comsol/COMSOL_ProgrammingReferenceManual.pdf Farrow, D. E. and Hocking, G. C. A numerical model for withdrawal from a two layer fluid. J. Fluid Mech. 549:141–157, 2006. doi:10.1017/S0022112005007561 Henderson, N., Flores, E., Sampaio, M., Freitas, L. and Platt, G. M. Supercritical fluid flow in porous media: modelling and simulation. Chem. Eng. Sci. 60:1797–1808, 2005. doi:10.1016/j.ces.2004.11.012 Lucas, S. K., Blake, J. R. and Kucera, A. A boundary-integral method applied to water coning in oil reservoirs. ANZIAM J. 32(3):261–283, 1991. doi:10.1017/S0334270000006858 Meyer, H. I. and Garder, A. O. Mechanics of two immiscible fluids in porous media. J. Appl. Phys., 25:1400–1406, 1954. doi:10.1063/1.1721576 Muskat, M. and Wycokoff, R. D. An approximate theory of water coning in oil production. Trans. AIME 114:144–163, 1935. doi:10.2118/935144-G GNU Octave. https://www.gnu.org/software/octave/doc/v4.2.1/ Yih, C. S. On steady stratified flows in porous media. Quart. J. Appl. Maths. 40(2):219–230, 1982. doi:10.1090/qam/666676 Yu, D., Jackson, K. and Harmon, T. C. Disperson and diffusion in porous media under supercritical conditions. Chem. Eng. Sci. 54:357–367, 1999. doi:10.1016/S0009-2509(98)00271-1 Zhang, H. and Hocking, G. C. Axisymmetric flow in an oil reservoir of finite depth caused by a point sink above an oil-water interface. J. Eng. Math. 32:365–376, 1997. doi:10.1023/A:1004227232732 Zhang, H., Hocking, G. C. and Seymour, B. Critical and supercritical withdrawal from a two-layer fluid through a line sink in a bounded aquifer. Adv. Water Res. 32:1703–1710, 2009. doi:10.1016/j.advwatres.2009.09.002 Zill, D. G. and Wright, W. S. Differential Equations with Boundary-value problems, 8th Edition. Brooks Cole, Boston USA, 2013.


Sign in / Sign up

Export Citation Format

Share Document