rotating frame
Recently Published Documents


TOTAL DOCUMENTS

864
(FIVE YEARS 100)

H-INDEX

49
(FIVE YEARS 6)

Author(s):  
Abdullah Guvendi ◽  
Hassan Hassanabadi

In this paper, we investigate the relativistic dynamics of a fermion–antifermion pair holding through Dirac oscillator interaction in the rotating frame of [Formula: see text]-dimensional topological defect-generated geometric background. We obtain an exact energy spectrum for the system in question by solving the corresponding form of a fully covariant two-body Dirac equation. This energy spectrum depends on the angular velocity [Formula: see text] of uniformly rotating frame and angular deficit [Formula: see text] in the geometric background. Our results show that the effects of [Formula: see text] on each energy level of the system are not same and the [Formula: see text] impacts on the strength of interaction between the particles. Furthermore, we observe that it seems to be possible to actively tune the dynamics of such a fermion–antifermion system, in principle.


2021 ◽  
Vol 13 (24) ◽  
pp. 5104
Author(s):  
Songlin Lei ◽  
Dongdong Lu ◽  
Xiaolan Qiu ◽  
Chibiao Ding

Deep learning has been widely used in the field of SAR ship detection. However, current SAR ship detection still faces many challenges, such as complex scenes, multiple scales, and small targets. In order to promote the solution to the above problems, this article releases a high-resolution SAR ship detection dataset which can be used for rotating frame target detection. The dataset contains six categories of ships. In total, 30 panoramic SAR tiles of the Chinese Gaofen-3 of port areas with a 1-m resolution were cropped to slices, each with 1024 × 1024 pixels. In addition, most of the images in the dataset contain nearshore areas with complex background interference. Eight state-of-the-art rotated detectors and a CFAR-based method were used to evaluate the dataset. Experimental results revealed that the complex background will have a great impact on the performance of detectors.


Author(s):  
Faizuddin Ahmed

The effects of uniform rotation on a relativistic scalar particle that interacts with a Cornell-type potential in background space–time described by the Kaluza–Klein theory are analyzed and the gravitational analogue of the Aharonov–Bohm effect is observed. Furthermore, linear confinement of a relativistic scalar particle was also discussed. We see a coupling between the angular velocity of the rotating frame [Formula: see text] and the angular momentum eigenvalue [Formula: see text] which shows the Sagnac-type effect.


2021 ◽  
Vol 17 ◽  
Author(s):  
M. Veera Krishna ◽  
Ali J. Chamkha

Background: It is discussed the radiative magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting hybrid nanoliquid over an exponentially accelerated vertical surface under the influence of slip velocity in a rotating frame taking Hall and ion slip impacts into account. Methods: Water and ethylene glycol mixture have been considered as a base fluid. A steady homogeneous magnetic field is applied under the assumption of low magnetic Reynolds number. The ramped temperature and time varying concentration at the surface is made into consideration. The first order consistent chemical reaction and heat absorption are also regarded. Silver (Ag) and titania (TiO2) nanoparticles are disseminated in base fluid water and ethylene glycol mixture to be formed hybrid nanofluid. Results: The Laplace transformation technique is employed on the non-dimensional governing equations for the closed form solutions. Based on these outcomes, the phrases for non-dimensional shear stresses, rates of heat and mass transfer are also evaluated. The graphical representations are presented to scrutinize the effects of physical parameters on the significant flow characteristics. The computational values of the shear stresses, rates of heat and mass transports near the surface are tabulated by a range of implanted parameters. Conclusion: The resultant velocity is growing by an increasing in thermal and concentration buoyancy forces, Hall and ion-slip parameters, whereas rotation and slip parameters have overturn outcome on it. The temperature of hybrid Ag-TiO2/WEG nanofluid is relatively superior to that of Ag-WEG nanofluid. Species concentration of hybrid Ag-TiO2/WEG nanofluid is decreased with an increasing in Schmidt number and chemical reaction parameter.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1685
Author(s):  
Florin Teleanu ◽  
Alexandru Topor ◽  
Diana Serafin ◽  
Aude Sadet ◽  
Paul R. Vasos

Solution-state distance restraints for protein structure determination with Ångström-level resolution rely on through-space transfer of magnetization between nuclear spins. Such magnetization transfers, named Overhauser effects, occur via dipolar magnetic couplings. We demonstrate improvements in magnetization transfer using long-lived coherences (LLCs)—singlet-triplet superpositions that are antisymmetric with respect to spin-permutation within pairs of coupled magnetic nuclei—as the magnetization source. Magnetization transfers in the presence of radio-frequency irradiation, known as ‘rotating-frame’ Overhauser effects (ROEs), are predicted by theory to improve by the use of LLCs; calculations are matched by preliminary experiments herein. The LLC-ROE transfers were compared to the transmission of magnetization via classical transverse routes. Long-lived coherences accumulate magnetization on an external third proton, K, with transfer rates that depended on the tumbling regime. I,S →K transfers in the LLC configuration for (I,S) are anticipated to match, and then overcome, the same transfer rates in the classical configuration as the molecular rotational correlation times increase. Experimentally, we measured the LLC-ROE transfer in dipeptide AlaGly between aliphatic protons in different residues K = Ala − Hα and (I,S) = Gly − Hα1,2 over a distance dK,I,S = 2.3 Å. Based on spin dynamics calculations, we anticipate that, for such distances, a superior transfer of magnetization occurs using LLC-ROE compared to classical ROE at correlation times above τC=10 ns. The LLC-ROE effect shows potential for improving structural studies of large proteins and offering constraints of increased precision for high-affinity protein-ligand complexes in slow tumbling in the liquid state.


2021 ◽  
Vol 33 (9) ◽  
pp. 096607
Author(s):  
M. Eletta Negretti ◽  
Francesco L. Tucciarone ◽  
Achim Wirth

2021 ◽  
pp. 2714-2725
Author(s):  
Batool A. Almusawi ◽  
Ahmed M. Abdulhadi

This paper discusses Ree–Eyring fluid’s peristaltic transport in a rotating frame and examines the impacts of Magnetohydrodynamics (MHD). The results deal with  systematically (analytically) applying each of the governing equations of Ree–Eyring fluid, the axial and secondary velocities, flow rate due to auxiliary stream, and bolus. The effects of some distinctive variables, such as Hartman number, heat source/sink, and amplitude ratio, are taken under consideration and illustrated through graphs.


Sign in / Sign up

Export Citation Format

Share Document