Inhibition of return to successively cued spatial locations.

Author(s):  
Jay Pratt ◽  
Richard A. Abrams
2000 ◽  
Vol 12 (3) ◽  
pp. 421-428 ◽  
Author(s):  
Andrea Berger ◽  
Avishai Henik

Inhibition of return (IOR) refers to a reflexive mechanism mediated by phylogenetically primitive extrageniculate visuomotor pathways, which apparently serves to favor novel spatial locations by inhibiting those recently sampled. We demonstrate an asymmetry between temporal and nasal hemifields in the strategic modulation of IOR by endogenously controlled attention. Exogenous and endogenous precues were manipulated independently on each trial such that precues to initiate endogenous spatial orienting were presented after IOR had been activated by exogenous visual signals. Both types of precues manifested their characteristic effects on reaction time (RT) to detect subsequent targets: facilitation by endogenous precues, and IOR by exogenous precues. Under monocular viewing, an asymmetric interaction between these two mechanisms was observed. While endogenous allocation of attention to the nasal hemifield reduced IOR, no endogenous modulation of IOR was present in the temporal hemifield where the effects of the two types of precues were independent. These observations suggest a framework for understanding the neurobiology of automaticity and control—from an evolutionary perspective.


2015 ◽  
Vol 68 (2) ◽  
pp. 402-416 ◽  
Author(s):  
W. Joseph MacInnes ◽  
Hannah M. Krüger ◽  
Amelia R. Hunt

Responses tend to be slower to previously fixated spatial locations, an effect known as “inhibition of return” (IOR). Saccades cannot be assumed to be independent, however, and saccade sequences programmed in parallel differ from independent eye movements. We measured the speed of both saccadic and manual responses to probes appearing in previously fixated locations when those locations were fixated as part of either parallel or independent saccade sequences. Saccadic IOR was observed in independent but not parallel saccade sequences, while manual IOR was present in both parallel and independent sequence types. Saccadic IOR was also short-lived, and dissipated with delays of more than ∼1500 ms between the intermediate fixation and the probe onset. The results confirm that the characteristics of IOR depend critically on the response modality used for measuring it, with saccadic and manual responses giving rise to motor and attentional forms of IOR, respectively. Saccadic IOR is relatively short-lived and is not observed at intermediate locations of parallel saccade sequences, while attentional IOR is long-lasting and consistent for all sequence types.


Author(s):  
Kevin Dent

In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.


2007 ◽  
Author(s):  
Ana Chica ◽  
Juan Lupianez ◽  
Tracy L. Taylor ◽  
Raymond M. Klein
Keyword(s):  

2006 ◽  
Author(s):  
Ulrich W. Weger ◽  
Naseem Al-Aidroos ◽  
Jay Pratt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document