spatial location
Recently Published Documents


TOTAL DOCUMENTS

1664
(FIVE YEARS 546)

H-INDEX

76
(FIVE YEARS 8)

2022 ◽  
Vol 11 (1) ◽  
pp. 68
Author(s):  
Peng Ye ◽  
Xueying Zhang ◽  
Chunju Zhang ◽  
Yulong Dang

In the big data era, spatial positioning based on location description is the foundation to the intelligent transformation of location-based-services. To solve the problem of vagueness in location description in different contexts, this paper proposes a positioning method based on supervaluation semantics. Firstly, through combing the laws of human spatial cognition, the types of elements that people pay attention to in location description are clarified. On this basis, the source of vagueness in the location description and its embodiment in the expression form of each element are analyzed from multiple levels. Secondly, the positioning model is constructed from the following three aspects: spatial object, distance relation and direction relation. The contexts of multiple location description are super-valued, respectively, while the threshold of observations is obtained from the context semantics. Thus, the precisification of location description is realized for positioning. Thirdly, a question-answering system is designed to the collect contexts of location description, and a case study on the method is conducted. The case can verify the transformation of a set of users’ viewpoints on spatial cognition into the real-world spatial scope, to realize the representation of vague location description in the geographic information system. The result shows that the method proposed in the paper breaks through the traditional vagueness modeling, which only focuses on spatial relationship, and enhances the interpretability of semantics of vague location description. Moreover, supervaluation semantics can obtain the precisification results of vague location description in different situations, and the positioning localities are more suitable to individual subjective cognition.


Author(s):  
В.О. Жилинский ◽  
Л.Г. Гагарина

Проведен обзор методов и алгоритмов формирования рабочего созвездия навигационных космических аппаратов при решении задач определения местоположения потребителя ГНСС. Появление новых орбитальных группировок и развитие прошлых поколений глобальных навигационных спутниковых систем (ГНСС) способствует увеличению как количества навигационных аппаратов, так и навигационных радиосигналов, излучаемых каждым спутником, в связи с чем решение проблемы выбора навигационных аппаратов является важной составляющей навигационной задачи. Рассмотрены исследования, посвященные типовым алгоритмам формирования рабочего созвездия, а также современным алгоритмам, построенным с привлечением элементов теории машинного обучения. Представлена связь ошибок определения координат потребителя, погрешностей определения псевдодальностей и пространственного расположения навигационных аппаратов и потребителя. Среди рассмотренных алгоритмов выделены три направления исследований: 1) нацеленных на поиск оптимального рабочего созвездия, обеспечивающего минимальную оценку выбранного геометрического фактора снижения точности; 2) нацеленных на поиск квазиоптимальных рабочих созвездий с целью уменьшения вычислительной сложности алгоритма ввиду большого количества видимых спутников; 3) позволяющих одновременно работать в совмещенном режиме по нескольким ГНСС. Приводятся особенности реализаций алгоритмов, их преимущества и недостатки. В заключении приведены рекомендации по изменению подхода к оценке эффективности алгоритмов, а также делается вывод о необходимости учета как геометрического расположения космических аппаратов, так и погрешности определения псевдодальности при выборе космического аппарата в рабочее созвездие The article provides an overview of methods and algorithms for forming a satellite constellation as a part of the navigation problem for the positioning, navigation and timing service. The emergence of new orbital constellations and the development of past GNSS generations increase both the number of navigation satellites and radio signals emitted by every satellite, and therefore the proper solution of satellite selection problem is an important component of the positioning, navigation and timing service. We considered the works devoted to typical algorithms of working constellation formation, as well as to modern algorithms built with the use of machine-learning theory elements. We present the relationship between user coordinates errors, pseudorange errors and the influence of spatial location of satellites and the user. Three directions of researche among reviewed algorithms are outlined: 1) finding the best satellite constellation that provides the minimum geometric dilution of precision; 2) finding quasi-optimal satellite constellation in order to reduce the computational complexity of the algorithm due to the large number of visible satellites; 3) possibility to work in a combined mode using radio signals of multiple GNSS simultaneously. The article presents the features of the algorithms' implementations, their advantages and disadvantages. The conclusion presents the recommendations to change the approach to assessing the performance of the algorithms, and concludes that it is necessary to take into account both the satellite geometric configuration, and pseudorange errors when satellite constellation is being formed


2022 ◽  
Vol 47 (1) ◽  
pp. 305-324
Author(s):  
Claudia Anedda ◽  
Fabrizio Cuccu

The subject of this paper is inspired by Cantrell and Cosner (1989) and Cosner, Cuccu and Porru (2013). Cantrell and Cosner (1989) investigate the dynamics of a population in heterogeneous environments by means of diffusive logistic equations. An important part of their study consists in finding sufficient conditions which guarantee the survival of the species. Mathematically, this task leads to the weighted eigenvalue problem \(-\Delta u =\lambda m u \) in a bounded smooth domain \(\Omega\subset \mathbb{R}^N\), \(N\geq 1\), under homogeneous Dirichlet boundary conditions, where \(\lambda \in \mathbb{R}\) and \(m\in L^\infty(\Omega)\). The domain \(\Omega\) represents the environment and \(m(x)\), called the local growth rate, says where the favourable and unfavourable habitats are located. Then, Cantrell and Cosner (1989) consider a class of weights \(m(x)\) corresponding to environments where the total sizes of favourable and unfavourable habitats are fixed, but their spatial arrangement is allowed to change; they determine the best choice among them for the population to survive. In our work we consider a sort of refinement of the result above. We write the weight \(m(x)\) as sum of two (or more) terms, i.e. \(m(x)=f_1(x)+f_2(x)\), where \(f_1(x)\) and \(f_2(x)\) represent the spatial densities of the two resources which contribute to form the local growth rate \(m(x)\). Then, we fix the total size of each resource allowing its spatial location to vary. As our first main result, we show that there exists an optimal choice of \(f_1(x)\) and \(f_2(x)\) and find the form of the optimizers. Our proof relies on some results in Cosner, Cuccu and Porru (2013) and on a new property (to our knowledge) about the classes of rearrangements of functions. Moreover, we show that if \(\Omega\) is Steiner symmetric, then the best arrangement of the resources inherits the same kind of symmetry. (Actually, this is proved in the more general context of the classes of rearrangements of measurable functions.


2022 ◽  
Vol 12 (2) ◽  
pp. 746
Author(s):  
Qingyu Zhu ◽  
Qingkai Han ◽  
Xiaodong Yang ◽  
Junzhe Lin

This paper presents the dynamic characteristics analysis of a rigid body system with spatial multi-point elastic supports, as well as the sensitivity analysis of support parameters. A rigid object is characterized by six degrees-of-freedom (DOFs) motions and considering the spatial location vector decomposition of elastic supports, a rigid body system dynamic model with spatial multi-point elastic supports is derived via the Lagrangian energy method. The system modal frequencies are calculated, and to be verified by finite element modal analysis results. Next, based on the above-mentioned model, system modal frequencies are obtained under different support locations, where the support stiffness components are different. Interpolate the stiffness components corresponding to each support location, calculate system modal frequencies, and the response surface model (RSM) for system modal frequencies is established. Further, based on the RSM modal analysis results, the allowable support location for the system modal insensitive area can be obtained. At last, a lubricating oil-tank system with four supports is taken as an example, and the effects of support spatial locations and stiffness components on the system inherent characteristics are discussed. This present work can provide a basis for the dynamic design of the spatial location and stiffness for this type of installation structures.


2022 ◽  
Author(s):  
Sami Ryan Yousif

Mental representations are the essence of cognition. Yet, to understand how the mind works, we must understand not just the content of mental representations (i.e., what information is stored), but also the format of those representations (i.e., how that information is stored). But what does it mean for representations to be formatted? How many formats are there? Is it possible that the mind represents some pieces of information in multiple formats at once? To address these questions, I discuss a ‘case study’ of representational format: the representation of spatial location. I review work (a) across species and across development, (b) across spatial scales, and (c) across levels of analysis (e.g., high-level cognitive format vs. low-level neural format). Along the way, I discuss the possibility that the same information may be organized in multiple formats simultaneously (e.g., that locations may be represented in both Cartesian and polar coordinates). Ultimately, I argue that seemingly ‘redundant’ formats may support the flexible spatial behavior observed in humans, and that we should approach the study of all mental representations with this possibility in mind.


2022 ◽  
pp. 1-28
Author(s):  
Fey Parrill ◽  
Jennifer Hinnell ◽  
Grace Moran ◽  
Hannah Boylan ◽  
Ishita Gupta ◽  
...  

Abstract We present two studies exploring how participants respond when a speaker contrasts two ideas, then expresses an ambiguous preference towards one of them. Study 1 showed that, when reading a speaker’s preference as text, participants tended to choose whatever was said last as matching the speaker’s preference, reflecting the recent-mention bias of anaphora resolution. In Study 2, we asked whether this pattern changed for audio versions of our stimuli. We found that it did not. We then asked whether observers used gesture to disambiguate the speaker’s preference. Participants watched videos in which two statements were spoken. Co-speech gestures were produced during each statement, in two different locations. Next, an ambiguous preference for one option was spoken. In ‘gesture disambiguating’ trials, this statement was accompanied by a gesture in the same spatial location as the gesture accompanying the first statement. In ‘gesture non-disambiguating’ trials, no third gesture occurred. Participants chose the first statement as matching the speaker’s preference more often for gesture disambiguating compared to non-disambiguating trials. Our findings add to the literature on resolution of ambiguous anaphoric reference involving concrete entities and discourse deixis, and we extend this literature to show that gestures indexing abstract ideas are also used during discourse comprehension.


2022 ◽  
Vol 15 ◽  
Author(s):  
Marcus Jeschke ◽  
Frank W. Ohl ◽  
Xiaoqin Wang

The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature. Cooling-induced increases in the width of extracellularly recorded spikes in auditory cortex were observed over the distance of several hundred micrometers away from the cooling probe. Cortical neurons displayed reduction in both spontaneous and stimulus driven firing rates with decreased cortical temperatures. In thalamus, cortical cooling led to increased spontaneous firing and either increased or decreased stimulus driven activity. Furthermore, response tuning to modulation frequencies of temporally modulated sounds and spatial tuning to sound source location could be altered (increased or decreased) by cortical cooling. Specifically, best modulation frequencies of individual MGB neurons could shift either toward higher or lower frequencies based on the vector strength or the firing rate. The tuning of MGB neurons for spatial location could both sharpen or widen. Elevation preference could shift toward higher or lower elevations and azimuth tuning could move toward ipsilateral or contralateral locations. Such bidirectional changes were observed in many parameters which suggests that the auditory thalamus acts as a filter that could be adjusted according to behaviorally driven signals from auditory cortex. Future work will have to delineate the circuit elements responsible for the observed effects.


2022 ◽  
Vol 65 (1) ◽  
pp. 99-106
Author(s):  
Ben Mildenhall ◽  
Pratul P. Srinivasan ◽  
Matthew Tancik ◽  
Jonathan T. Barron ◽  
Ravi Ramamoorthi ◽  
...  

We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully connected (nonconvolutional) deep network, whose input is a single continuous 5D coordinate (spatial location ( x , y , z ) and viewing direction ( θ, ϕ )) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis.


2021 ◽  
Vol 75 (6) ◽  
pp. 540-543
Author(s):  
Daniel Kvak ◽  
Karolína Kvaková

Summary: The use of artifi cial intelligence as an assistive detection method in endoscopy has attracted increasing interest in recent years. Machine learning algorithms promise to improve the effi ciency of polyp detection and even optical localization of fi ndings, all with minimal training of the endoscopist. The practical goal of this study is to analyse the CAD software (computer-aided dia gnosis) Carebot for colorectal polyp detection using a convolutional neural network. The proposed binary classifier for polyp detection achieves accuracy of up to 98%, specifi city of 0.99 and precision of 0.96. At the same time, the need for the availability of large-scale clinical data for the development of artifi cial- -intelligence-based models for the automatic detection of adenomas and benign neoplastic lesions is discussed. Key words: polyp detection – convolutional neural network – artifi cial intelligence – computer-aided dia gnosis – spatial location


2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 24-31
Author(s):  
Svitlana Kuznichenko ◽  
Iryna Buchynska

The work is devoted to the problem of interpretation of fuzzy semantics of cognitive descriptions of spatial relations in natural language and their visualization in a geographic information system (GIS). The solution to the problem of determining the fuzzy spatial location of an object based on vague descriptions of the observer in natural language is considered. The task is relevant in critical situations when there is no way to report the exact coordinates of the observed object, except by describing its location relative to the observer itself. Such a situation may be the result of a crime, terrorist act or natural disaster. An observer who finds itself at the scene transmits a text message, which is a description of the location of the object or place (for example, the crime scene, the location of dangerous objects, the crash site). The semantics of the spatial location of the object can be further extracted from the text message. The proposed fuzzy approach is based on the formalization of the observer's phrases, with which it can describe spatial relations, in the form of a set of linguistic variables that determine the direction and distance to the object. Examples of membership functions for linguistic variables are given. The spatial knowledge base is built on the basis of the phrases of observers and their corresponding fuzzy regions. Algorithms for constructing cognitive regions in GIS have been developed. Methods of their superposition to obtain the final fuzzy location of the object are proposed. An example of the implementation of a fuzzy model for identifying cognitive regions based on vague descriptions of several observers, performed using developed Python scripts integrated into ArcGIS 10.5, is considered.


Sign in / Sign up

Export Citation Format

Share Document