Functional magnetic resonance imaging evidence for right-hemisphere involvement in processing unusual semantic relationships.

2000 ◽  
Vol 14 (3) ◽  
pp. 361-369 ◽  
Author(s):  
Carol A. Seger ◽  
John E. Desmond ◽  
Gary H. Glover ◽  
John D. E. Gabrieli
2001 ◽  
Vol 21 (11) ◽  
pp. 1330-1341 ◽  
Author(s):  
Hélène Gros ◽  
Kader Boulanouar ◽  
Gérard Viallard ◽  
Emmanuelle Cassol ◽  
Pierre Celsis

Functional neuroimaging studies have suggested a specific role of the extrastriate cortex in letter string and visual word form processing. However, this region has been shown to be involved in object recognition and its specificity for the processing of linguistic stimuli may be questioned. The authors used an event-related functional magnetic resonance imaging design with category priming to record the response elicited by the passive viewing of single letters, geometric figures, and of the categorically ambiguous stimulus “O” that pertains to both sets of familiar symbols. Bilateral activations in the extrastriate cortex were found, with a left predominance particularly pronounced for the ambiguous stimulus. Individual analysis of spatial extent and signal intensity showed a priming × stimulus × hemisphere interaction. When primed by the congruous categoric set, a bilateral decrease in activation was observed for letters and geometric figures. The ambiguous stimulus behaved as a letter for the left hemisphere, with decreased activation when primed by letters, whereas in the right hemisphere, an adaptation effect occurred when primed by geometric figures. These priming effects suggest that, for the ambiguous stimulus, letter processing was systematically involved in the left extrastriate cortex. The current results support the existence of a neural substrate for the abstract category of letters.


2007 ◽  
Vol 19 (12) ◽  
pp. 2082-2099 ◽  
Author(s):  
David Badre ◽  
Mark D'Esposito

The prefrontal cortex (PFC) is central to flexible and organized action. Recent theoretical and empirical results suggest that the rostro-caudal axis of the frontal lobes may reflect a hierarchical organization of control. Here, we test whether the rostro-caudal axis of the PFC is organized hierarchically, based on the level of abstraction at which multiple representations compete to guide selection of action. Four functional magnetic resonance imaging (fMRI) experiments parametrically manipulated the set of task-relevant (a) responses, (b) features, (c) dimensions, and (d) overlapping cue-to-dimension mappings. A systematic posterior to anterior gradient was evident within the PFC depending on the manipulated level of representation. Furthermore, across four fMRI experiments, activation in PFC subregions was consistent with the sub- and superordinate relationships that define an abstract representational hierarchy. In addition to providing further support for a representational hierarchy account of the rostro-caudal gradient in the PFC, these data provide important empirical constraints on current theorizing about control hierarchies and the PFC.


2007 ◽  
Vol 19 (5) ◽  
pp. 799-816 ◽  
Author(s):  
Frederic Dick ◽  
Ayse Pinar Saygin ◽  
Gaspare Galati ◽  
Sabrina Pitzalis ◽  
Simone Bentrovato ◽  
...  

We used functional magnetic resonance imaging (fMRI) in conjunction with a voxel-based approach to lesion symptom mapping to quantitatively evaluate the similarities and differences between brain areas involved in language and environmental sound comprehension. In general, we found that language and environmental sounds recruit highly overlapping cortical regions, with cross-domain differences being graded rather than absolute. Within language-based regions of interest, we found that in the left hemisphere, language and environmental sound stimuli evoked very similar volumes of activation, whereas in the right hemisphere, there was greater activation for environmental sound stimuli. Finally, lesion symptom maps of aphasic patients based on environmental sounds or linguistic deficits [Saygin, A. P., Dick, F., Wilson, S. W., Dronkers, N. F., & Bates, E. Shared neural resources for processing language and environmental sounds: Evidence from aphasia. Brain, 126, 928–945, 2003] were generally predictive of the extent of blood oxygenation level dependent fMRI activation across these regions for sounds and linguistic stimuli in young healthy subjects.


Sign in / Sign up

Export Citation Format

Share Document