Color effects on self-motion perception

2006 ◽  
Author(s):  
Frederick Bonato ◽  
Andrea Bubka
2021 ◽  
pp. 1-11
Author(s):  
Mario Faralli ◽  
Michele Ori ◽  
Giampietro Ricci ◽  
Mauro Roscini ◽  
Roberto Panichi ◽  
...  

BACKGROUND: Self-motion misperception has been observed in vestibular patients during asymmetric body oscillations. This misperception is correlated with the patient’s vestibular discomfort. OBJECTIVE: To investigate whether or not self-motion misperception persists in post-ictal patients with Ménière’s disease (MD). METHODS: Twenty-eight MD patients were investigated while in the post-ictal interval. Self-motion perception was studied by examining the displacement of a memorized visual target after sequences of opposite directed fast-slow asymmetric whole body rotations in the dark. The difference in target representation was analyzed and correlated with the Dizziness Handicap Inventory (DHI) score. The vestibulo-ocular reflex (VOR) and clinical tests for ocular reflex were also evaluated. RESULTS: All MD patients showed a noticeable difference in target representation after asymmetric rotation depending on the direction of the fast/slow rotations. This side difference suggests disruption of motion perception. The DHI score was correlated with the amount of motion misperception. In contrast, VOR and clinical trials were altered in only half of these patients. CONCLUSIONS: Asymmetric rotation reveals disruption of self-motion perception in MD patients during the post-ictal interval, even in the absence of ocular reflex impairment. Motion misperception may cause persistent vestibular discomfort in these patients.


2006 ◽  
Vol 3 (3) ◽  
pp. 194-216 ◽  
Author(s):  
Bernhard E. Riecke ◽  
Jörg Schulte-Pelkum ◽  
Marios N. Avraamides ◽  
Markus Von Der Heyde ◽  
Heinrich H. Bülthoff

1998 ◽  
Vol 42 (1-8) ◽  
pp. 273-280 ◽  
Author(s):  
D.E Parker ◽  
D.L Harm ◽  
G.R Sandoz ◽  
N.C Skinner

2006 ◽  
Vol 16 (1-2) ◽  
pp. 23-28 ◽  
Author(s):  
W. Geoffrey Wright ◽  
Paul DiZio ◽  
James R. Lackner

We evaluated the influence of moving visual scenes and knowledge of spatial and physical context on visually induced self-motion perception in an immersive virtual environment. A sinusoidal, vertically oscillating visual stimulus induced perceptions of self-motion that matched changes in visual acceleration. Subjects reported peaks of perceived self-motion in synchrony with peaks of visual acceleration and opposite in direction to visual scene motion. Spatial context was manipulated by testing subjects in the environment that matched the room in the visual scene or by testing them in a separate chamber. Physical context was manipulated by testing the subject while seated in a stable, earth-fixed desk chair or in an apparatus capable of large linear motions, however, in both conditions no actual motion occurred. The compellingness of perceived self-motion was increased significantly when the spatial context matched the visual input and actual body displacement was possible, however, the latency and amplitude of perceived self-motion were unaffected by the spatial or physical context. We propose that two dissociable processes are involved in self-motion perception: one process, primarily driven by visual input, affects vection latency and path integration, the other process, receiving cognitive input, drives the compellingness of perceived self-motion.


2002 ◽  
Vol 147 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Georg Schweigart ◽  
Rey-Djin Chien ◽  
Thomas Mergner

Author(s):  
Kayoko Murata ◽  
Yoko Ozawa ◽  
Shigeru Ichihara

2019 ◽  
Vol 19 (10) ◽  
pp. 294a
Author(s):  
Scott T Steinmetz ◽  
Oliver W Layton ◽  
N. Andrew Browning ◽  
Nathaniel V Powell ◽  
Brett R Fajen

Sign in / Sign up

Export Citation Format

Share Document