scholarly journals Effect of intravenous anesthetic propofol on synaptic vesicle exocytosis at the frog neuromuscular junction

2010 ◽  
Vol 32 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Luciana Ferreira Leite ◽  
Renato Santiago Gomez ◽  
Matheus de Castro Fonseca ◽  
Marcus Vinicius Gomez ◽  
Cristina Guatimosim
1981 ◽  
Vol 88 (3) ◽  
pp. 564-580 ◽  
Author(s):  
J E Heuser ◽  
T S Reese

The sequence of structural changes that occur during synaptic vesicle exocytosis was studied by quick-freezing muscles at different intervals after stimulating their nerves, in the presence of 4-aminopyridine to increase the number of transmitter quanta released by each stimulus. Vesicle openings began to appear at the active zones of the intramuscular nerves within 3-4 ms after a single stimulus. The concentration of these openings peaked at 5-6 ms, and then declined to zero 50-100 ms late. At the later times, vesicle openings tended to be larger. Left behind at the active zones, after the vesicle openings disappeared, were clusters of large intramembrane particles. The larger particles in these clusters were the same size as intramembrane particles in undischarged vesicles, and were slightly larger than the particles which form the rows delineating active zones. Because previous tracer work had shown that new vesicles do not pinch off from the plasma membrane at these early times, we concluded that the particle clusters originate from membranes of discharged vesicles which collapse into the plasmalemma after exocytosis. The rate of vesicle collapse appeared to be variable because different stages occurred simultaneously at most times after stimulation; this asynchrony was taken to indicate that the collapse of each exocytotic vesicle is slowed by previous nearby collapses. The ultimate fate of synaptic vesicle membrane after collapse appeared to be coalescence with the plasma membrane, as the clusters of particles gradually dispersed into surrounding areas during the first second after a stimulus. The membrane retrieval and recycling that reverse this exocytotic sequence have a slower onset, as has been described in previous reports.


Author(s):  
J.E. Heuser

The technique that we have used to capture synaptic vesicle exocytosis at the frog neuromuscular junction - that of quick-freezing muscles followed by freeze fracture (3) or freeze substitution (6) - works sufficiently well now that it may be useful in other sorts of membrane studies, or studies of fast structural changes with the electron microscope. This note reviews the quickfreezing technique we use, and describes its application to the problem of synaptic vesicle exocytosis and recycling at the synapse.Here, many of the membrane changes of interest occur during the brief delay in synaptic transmission, on a time scale of milliseconds or fractions of milliseconds, and leave only traces thereafter. In the past, we have studied these left-over traces in tissues fixed with the standard chemicals for electron microscopy (1), and have inferred from them that vesicles discharge the quanta of neurotransmitters, as the physiologists would predict.


2019 ◽  
Vol 123 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Yuko Koyanagi ◽  
Christina L. Torturo ◽  
Daniel C. Cook ◽  
Zhenyu Zhou ◽  
Hugh C. Hemmings

Sign in / Sign up

Export Citation Format

Share Document