sted microscopy
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 61)

H-INDEX

41
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Julia Kratz ◽  
Claudia Geisler ◽  
Alexander Egner
Keyword(s):  

2021 ◽  
Author(s):  
qingya wang ◽  
qilin qin ◽  
chen yuhan ◽  
tieshan yang ◽  
Qinfeng Xu ◽  
...  

2021 ◽  
Author(s):  
gangwei jiang ◽  
Tian-Bing Ren ◽  
Elisa D’Este ◽  
mengyi xiong ◽  
Bin Xiong ◽  
...  

Abstract The quality and application of super-resolution fluorescence imaging greatly lie in the properties of fluorescent probes. However, conventional fluorophores in a cellular environment often suffer from low brightness, poor photostability, and short Stokes shift (< 30 nm). Here we report a synergistic strategy to simultaneously improve such properties of regular fluorophores. Introduction of quinoxaline motif with fine-tuned electron density to conventional rhodamines generates new dyes with vibronic structure and inhibited twisted-intramolecular-charge-transfer (TICT) formation synchronously, thus increasing the brightness and photostability as well as Stokes shift. The new fluorophore BDQF-6 exhibits around twofold greater brightness (ε × Φ = 6.6 × 104 L·mol− 1·cm− 1) and Stokes shift (56 nm) than its parental fluorophore, Rhodamine B. Importantly, in Stimulated Emission Depletion (STED) microscopy, BDQF-6 derived probe possesses a superior photostability and thus renders threefold more frames than carbopyronine- and JF608-based probes, known as photostable fluorophores for STED imaging. More BDQF-6 derivatives were developed next, allowing us to perform wash-free organelles (mitochondria and lysosome) staining and protein labeling with ultrahigh signal-to-noise ratios (up to 106 folds) in confocal and STED microscopy of live cells, or two-photon and 3D STED microscopy of fixed cells. Furthermore, the strategy was well generalized to different types of dyes (pyronin, rhodol, coumarin, and Boranil), offering a new class of bright and photostable fluorescent probes with long Stokes shift (up to 136 nm) for bioimaging and biosensing.


2021 ◽  
Vol 22 (19) ◽  
pp. 10194
Author(s):  
Merel Stiekema ◽  
Frans C. S. Ramaekers ◽  
Dimitrios Kapsokalyvas ◽  
Marc A. M. J. van Zandvoort ◽  
Rogier J. A. Veltrop ◽  
...  

A- and B-type lamins are type V intermediate filament proteins. Mutations in the genes encoding these lamins cause rare diseases, collectively called laminopathies. A fraction of the cells obtained from laminopathy patients show aberrations in the localization of each lamin subtype, which may represent only the minority of the lamina disorganization. To get a better insight into more delicate and more abundant lamina abnormalities, the lamin network can be studied using super-resolution microscopy. We compared confocal scanning laser microscopy and stimulated emission depletion (STED) microscopy in combination with different fluorescence labeling approaches for the study of the lamin network. We demonstrate the suitability of an immunofluorescence staining approach when using STED microscopy, by determining the lamin layer thickness and the degree of lamin A and B1 colocalization as detected in fixed fibroblasts (co-)stained with lamin antibodies or (co-)transfected with EGFP/YFP lamin constructs. This revealed that immunofluorescence staining of cells does not lead to consequent changes in the detected lamin layer thickness, nor does it influence the degree of colocalization of lamin A and B1, when compared to the transfection approach. Studying laminopathy patient dermal fibroblasts (LMNA c.1130G>T (p.(Arg377Leu)) variant) confirmed the suitability of immunofluorescence protocols in STED microscopy, which circumvents the need for less convenient transfection steps. Furthermore, we found a significant decrease in lamin A/C and B1 colocalization in these patient fibroblasts, compared to normal human dermal fibroblasts. We conclude that super-resolution light microscopy combined with immunofluorescence protocols provides a potential tool to detect structural lamina differences between normal and laminopathy patient fibroblasts.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 330
Author(s):  
Jia Zhang ◽  
Xinwei Gao ◽  
Luwei Wang ◽  
Yong Guo ◽  
Yinru Zhu ◽  
...  

Stimulated emission depletion (STED) microscopy is a typical laser-scanning super-resolution imaging technology, the emergence of which has opened a new research window for studying the dynamic processes of live biological samples on a nanometer scale. According to the characteristics of STED, a high depletion power is required to obtain a high resolution. However, a high laser power can induce severe phototoxicity and photobleaching, which limits the applications for live cell imaging, especially in two-color STED super-resolution imaging. Therefore, we developed a low-power two-color STED super-resolution microscope with a single supercontinuum white-light laser. Using this system, we achieved low-power two-color super-resolution imaging based on digital enhancement technology. Lateral resolutions of 109 and 78 nm were obtained for mitochondria and microtubules in live cells, respectively, with 0.8 mW depletion power. These results highlight the great potential of the novel digitally enhanced two-color STED microscopy for long-term dynamic imaging of live cells.


Author(s):  
Giorgio Tortarolo ◽  
Simonluca Piazza ◽  
Andrea Bucci ◽  
Paolo Bianchini ◽  
Colin J.R. Sheppard ◽  
...  

2021 ◽  
Author(s):  
Shaocong Liu ◽  
zhimin zhang ◽  
Yubing Han ◽  
Lu Yang ◽  
Cuifang Kuang ◽  
...  

Author(s):  
Tim E. Moors ◽  
Christina A. Maat ◽  
Daniel Niedieker ◽  
Daniel Mona ◽  
Dennis Petersen ◽  
...  

AbstractVarious post-translationally modified (PTM) proteoforms of alpha-synuclein (aSyn)—including C-terminally truncated (CTT) and Serine 129 phosphorylated (Ser129-p) aSyn—accumulate in Lewy bodies (LBs) in different regions of the Parkinson’s disease (PD) brain. Insight into the distribution of these proteoforms within LBs and subcellular compartments may aid in understanding the orchestration of Lewy pathology in PD. We applied epitope-specific antibodies against CTT and Ser129-p aSyn proteoforms and different aSyn domains in immunohistochemical multiple labelings on post-mortem brain tissue from PD patients and non-neurological, aged controls, which were scanned using high-resolution 3D multicolor confocal and stimulated emission depletion (STED) microscopy. Our multiple labeling setup highlighted a consistent onion skin-type 3D architecture in mature nigral LBs in which an intricate and structured-appearing framework of Ser129-p aSyn and cytoskeletal elements encapsulates a core enriched in CTT aSyn species. By label-free CARS microscopy we found that enrichments of proteins and lipids were mainly localized to the central portion of nigral aSyn-immunopositive (aSyn+) inclusions. Outside LBs, we observed that 122CTT aSyn+ punctae localized at mitochondrial membranes in the cytoplasm of neurons in PD and control brains, suggesting a physiological role for 122CTT aSyn outside of LBs. In contrast, very limited to no Ser129-p aSyn immunoreactivity was observed in brains of non-neurological controls, while the alignment of Ser129-p aSyn in a neuronal cytoplasmic network was characteristic for brains with (incidental) LB disease. Interestingly, Ser129-p aSyn+ network profiles were not only observed in neurons containing LBs but also in neurons without LBs particularly in donors at early disease stage, pointing towards a possible subcellular pathological phenotype preceding LB formation. Together, our high-resolution and 3D multicolor microscopy observations in the post-mortem human brain provide insights into potential mechanisms underlying a regulated LB morphogenesis.


2021 ◽  
Author(s):  
Pablo Carravilla ◽  
Anindita Dasgupta ◽  
Gaukhar Zhurgenbayeva ◽  
Dmytro I. Danylchuk ◽  
Andrey S. Klymchenko ◽  
...  

Understanding the plasma membrane nano-scale organisation and dynamics in living cells requires microscopy techniques with high temporal and spatial resolution and long acquisition times, that also allow for the quantification of membrane biophysical properties such as lipid ordering. Among the most popular super-resolution techniques, stimulated emission depletion (STED) microscopy offers one of the highest temporal resolution, ultimately defined by the scanning speed. However, monitoring live processes using STED microscopy is significantly limited by photobleaching, which recently has been circumvented by exchangeable membrane dyes that only temporarily reside in the membrane. Here, we show that NR4A, a polarity-sensitive exchangeable plasma membrane probe based on Nile Red, permits the super-resolved quantification of membrane biophysical parameters in real time with high temporal and spatial resolution as well as long acquisition times. The potential of this polarity-sensitive exchangeable dyes is showcased by live-cell real-time 3D-STED recordings of bleb formation and lipid exchange during membrane fusion, as well as by STED-fluorescence correlation spectroscopy (STED-FCS) experiments for the simultaneous quantification of membrane dynamics and lipid packing, which correlate in model and live-cell membranes.


Sign in / Sign up

Export Citation Format

Share Document