scholarly journals The expression and function of TRPV4 channels in primate retinal ganglion cells and bipolar cells

2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Fan Gao ◽  
Zhuo Yang ◽  
Roy A. Jacoby ◽  
Samuel M. Wu ◽  
Ji-Jie Pang
2020 ◽  
Author(s):  
Shahad Albadri ◽  
Olivier Armant ◽  
Tairi Aljand-Geschwill ◽  
Filippo Del Bene ◽  
Matthias Carl ◽  
...  

AbstractPromoting the regeneration or survival of retinal ganglion cells (RGCs) is one focus of regenerative medicine. Homeobox Barhl transcription factors might be instrumental in these processes. In mammals, only barhl2 is expressed in the retina and is required for both subtype identity acquisition of amacrine cells and for the survival of RGCs downstream of Atoh7, a transcription factor necessary for RGC genesis. The underlying mechanisms of this dual role of Barhl2 in mammals have remained elusive. Whole genome duplication in the teleost lineage generated the barhl1a and barhl2 paralogues. In the Zebrafish retina, Barhl2 functions as determinant of subsets of amacrine cells lineally related to RGCs independently of Atoh7. In contrast, barhl1a expression depends on Atoh7 but its expression dynamics and function have not been studied. Here we describe for the first time a Barhl1a:GFP reporter line in vivo showing that Barhl1a turns on exclusively in subsets of RGCs and their post-mitotic precursors. We also show transient expression of Barhl1a:GFP in diencephalic neurons extending their axonal projections as part of the post-optic commissure, at the time of optic chiasm formation. This work sets the ground for future studies on RGC subtype identity, axonal projections and genetic specification of Barhl1a-positive RGCs and commissural neurons.


Neuroscience ◽  
2012 ◽  
Vol 202 ◽  
pp. 99-107 ◽  
Author(s):  
S. Kaja ◽  
O.A. Mafe ◽  
R.A. Parikh ◽  
P. Kandula ◽  
C.A. Reddy ◽  
...  

1988 ◽  
Vol 1 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Rodrigo O. Kuljis ◽  
Harvey J. Karten

AbstractRecent immunocytochemical studies indicate the existence of several classes of peptide- (PRGC) and catecholamine-containing retinal ganglion cells in anurans, birds, and mammals. Different classes of PRGC project to discrete and seemingly unique layers in the retino-recipient portion of the anuran and avian optic tectum. Peptide-containing retinofugal projections to the frog tectum originate early in development, and are reestablished by some classes of PRGC during regeneration of the optic nerve. These findings indicate that chemically specific, parallel retinofugal pathways presumably subserve different functional aspects of vision in vertebrates. Exciting prospects for research include the correlation of physiologically with immunocytochemically defined classes of retinal ganglion cells, the analysis of the possible role of neuroactive peptides in retinofugal transmission, and the pharmacological manipulation of putative peptidergic retinofugal pathways to analyze their role in visual function.


2018 ◽  
Author(s):  
Shai Sabbah ◽  
Carin Papendorp ◽  
Elizabeth Koplas ◽  
Marjo Beltoja ◽  
Cameron Etebari ◽  
...  

SummaryWe have explored the synaptic networks responsible for the unique capacity of intrinsically photosensitive retinal ganglion cells (ipRGCs) to encode overall light intensity. This luminance signal is crucial for circadian, pupillary and related reflexive responses light. By combined glutamate-sensor imaging and patch recording of postsynaptic RGCs, we show that the capacity for intensity-encoding is widespread among cone bipolar types, including OFF types.Nonetheless, the bipolar cells that drive ipRGCs appear to carry the strongest luminance signal. By serial electron microscopic reconstruction, we show that Type 6 ON cone bipolar cells are the dominant source of such input, with more modest input from Types 7, 8 and 9 and virtually none from Types 5i, 5o, 5t or rod bipolar cells. In conventional RGCs, the excitatory drive from bipolar cells is high-pass temporally filtered more than it is in ipRGCs. Amacrine-to-bipolar cell feedback seems to contribute surprisingly little to this filtering, implicating mostly postsynaptic mechanisms. Most ipRGCs sample from all bipolar terminals costratifying with their dendrites, but M1 cells avoid all OFF bipolar input and accept only ectopic ribbon synapses from ON cone bipolar axonal shafts. These are remarkable monad synapses, equipped with as many as a dozen ribbons and only one postsynaptic process.


2018 ◽  
Vol 16 (7) ◽  
pp. 919-932 ◽  
Author(s):  
Vincenzo Parisi ◽  
Francesco Oddone ◽  
Lucia Ziccardi ◽  
Gloria Roberti ◽  
Gianluca Coppola ◽  
...  

2019 ◽  
Vol 36 ◽  
Author(s):  
Andrea S. Bordt ◽  
Diego Perez ◽  
Luke Tseng ◽  
Weiley Sunny Liu ◽  
Jay Neitz ◽  
...  

AbstractThere are more than 30 distinct types of mammalian retinal ganglion cells, each sensitive to different features of the visual environment. In rabbit retina, they can be grouped into four classes according to their morphology and stratification of their dendrites in the inner plexiform layer (IPL). The goal of this study was to describe the synaptic inputs to one type of Class IV ganglion cell, the third member of the sparsely branched Class IV cells (SB3). One cell of this type was partially reconstructed in a retinal connectome developed using automated transmission electron microscopy (ATEM). It had slender, relatively straight dendrites that ramify in the sublamina a of the IPL. The dendrites of the SB3 cell were always postsynaptic in the IPL, supporting its identity as a ganglion cell. It received 29% of its input from bipolar cells, a value in the middle of the range for rabbit retinal ganglion cells studied previously. The SB3 cell typically received only one synapse per bipolar cell from multiple types of presumed OFF bipolar cells; reciprocal synapses from amacrine cells at the dyad synapses were infrequent. In a few instances, the bipolar cells presynaptic to the SB3 ganglion cell also provided input to an amacrine cell presynaptic to the ganglion cell. There was apparently no crossover inhibition from narrow-field ON amacrine cells. Most of the amacrine cell inputs were from axons and dendrites of GABAergic amacrine cells, likely providing inhibitory input from outside the classical receptive field.


Nature ◽  
1975 ◽  
Vol 254 (5502) ◽  
pp. 659-662 ◽  
Author(s):  
W. R. Levick

2015 ◽  
Vol 56 (8) ◽  
pp. 4835 ◽  
Author(s):  
Irene González-Menéndez ◽  
Katja Reinhard ◽  
Jorge Tolivia ◽  
Bernd Wissinger ◽  
Thomas A. Münch

Sign in / Sign up

Export Citation Format

Share Document