scholarly journals Experimental quantum simulation of superradiant phase transition beyond no-go theorem via antisqueezing

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xi Chen ◽  
Ze Wu ◽  
Min Jiang ◽  
Xin-You Lü ◽  
Xinhua Peng ◽  
...  

AbstractThe superradiant phase transition in thermal equilibrium is a fundamental concept bridging statistical physics and electrodynamics, which has never been observed in real physical systems since the first proposal in the 1970s. The existence of this phase transition in cavity quantum electrodynamics systems is still subject of ongoing debates due to the no-go theorem induced by the so-called A2 term. Moreover, experimental conditions to study this phase transition are hard to achieve with current accessible technology. Based on the platform of nuclear magnetic resonance, here we experimentally simulate the occurrence of an equilibrium superradiant phase transition beyond no-go theorem by introducing the antisqueezing effect. The mechanism relies on that the antisqueezing effect recovers the singularity of the ground state via exponentially enhancing the zero point fluctuation of system. The strongly entangled and squeezed Schrödinger cat states of spins are achieved experimentally in the superradiant phase, which may play an important role in fundamental tests of quantum theory and implementations of quantum metrology.

2014 ◽  
Vol 29 (10) ◽  
pp. 1430026
Author(s):  
Serge Haroche

Microwave photons trapped in a superconducting cavity constitute an ideal system to realize some of the thought experiments imagined by the founding fathers of quantum physics. The interaction of these trapped photons with Rydberg atoms crossing the cavity illustrates fundamental aspects of measurement theory. The experiments performed with this "photon box" at the Ecole Normale Supérieure (ENS) belong to the domain of quantum optics called "Cavity Quantum Electrodynamics." We have realized the non-destructive counting of photons, the recording of field quantum jumps, the preparation and reconstruction of "Schrödinger cat" states of radiation and the study of their decoherence, which provides a striking illustration of the transition from the quantum to the classical world. These experiments have also led to the demonstration of basic steps in quantum information processing, including the deterministic entanglement of atoms and the realization of quantum gates using atoms and photons as quantum bits. This lecture starts with an introduction stressing the connection between the ENS photon box and the ion trap experiments of David Wineland, whose accompanying lecture recalls his own contribution to the field of single particle control. I give then a personal account of the early days of Cavity Quantum Electrodynamics before describing the main experiments performed at ENS during the last twenty years and concluding with a discussion comparing our work to other research dealing with the control of single quantum particles.


2008 ◽  
Vol 387 (1) ◽  
pp. 115-122 ◽  
Author(s):  
C.L. Wang ◽  
J.C. Li ◽  
M.L. Zhao ◽  
J.L. Zhang ◽  
W.L. Zhong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document