scholarly journals Generation of polarization singularities with geometric metasurfaces

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuchao Zhang ◽  
Xiaodong Yang ◽  
Jie Gao

AbstractThe polarization singularities are directly generated by using plasmonic metasurfaces with the geometric phase profiles designed to form the Poincaré beams. Different morphologies of polarization topological structures of lemon, star, monstar, spiral, dipole and quadrupole are created by the superpositions of Laguerre–Gauss modes with different orders under orthogonal circular or linear polarization basis. The polarization ellipse patterns and topological features of the produced optical vector fields are analyzed to reveal the properties of the polarization singularities of C-points and L-lines, and the orbital angular momentum states are also measured. The demonstrated polarization singularities generated from the geometric metasurfaces will promise many potential applications related to optical polarization imaging, metrology, optical trapping and quantum information processing.

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Li-Juan Li ◽  
Fei Ming ◽  
Xue-Ke Song ◽  
Liu Ye ◽  
Dong Wang

AbstractSince neutrino oscillations (NOs) show nonclassical features with the Leggett–Garg inequality and exhibit potential applications in quantum information processing and telecommunications, in order to further reveal quantum properties of the NO systems, we herein focus on investigating entanglement and entropic uncertainty relation in the context of three-flavor NOs. Specifically, we take advantage of three different types of entanglement measures to characterize quantum resources originating from NO systems, and examine the hierarchical relationship among them. Moreover, we analyze the experiment data from different neutrino sources including Daya Bay (0.5 and 1.6 km) and MINOS+ (735 km) collaborations in comparison with our theoretical results. We find that the dynamical evolution of both the entropic uncertainty and entanglement of system shows non-monotonicity, and the experimental results coincide with our theoretical prediction very well. Interestingly, it shows that neutrinos always maintain quantum properties during oscillation process. More importantly, we reveal that the variation of the uncertainty is almost anti-correlated with that of the entanglement of system. Therefore, the nature of entanglement and uncertainty in NOs can be explored in the practical experiment when the three-flavor neutrino states are treated as three-qubit ones, which might be useful for the potential NO-based applications on prospective quantum information processing.


2001 ◽  
Author(s):  
David P. DiVincenzo ◽  
Charles H. Bennett

Sign in / Sign up

Export Citation Format

Share Document