quantum states
Recently Published Documents





10.29007/7sj7 ◽  
2022 ◽  
Xuan Dai Le ◽  
Tuan Cuong Pham ◽  
Thi Hong Van Nguyen ◽  
Nhat Minh Tran ◽  
Van Vinh Dang

In this paper we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. A fidelity measure for quantum states based on the matrix geometric mean is introduced as an application of matrix equation.

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-27
Xuan-Bach Le ◽  
Shang-Wei Lin ◽  
Jun Sun ◽  
David Sanan

It is well-known that quantum programs are not only complicated to design but also challenging to verify because the quantum states can have exponential size and require sophisticated mathematics to encode and manipulate. To tackle the state-space explosion problem for quantum reasoning, we propose a Hoare-style inference framework that supports local reasoning for quantum programs. By providing a quantum interpretation of the separating conjunction, we are able to infuse separation logic into our framework and apply local reasoning using a quantum frame rule that is similar to the classical frame rule. For evaluation, we apply our framework to verify various quantum programs including Deutsch–Jozsa’s algorithm and Grover's algorithm.

2022 ◽  
pp. 159-181
Pranab Sarkar ◽  
Sankar Prasad Bhattacharyya

2022 ◽  
Vol 12 (1) ◽  
Jessica Halliday ◽  
Emilio Artacho

Known force terms arising in the Ehrenfest dynamics of quantum electrons and classical nuclei, due to a moving basis set for the former, can be understood in terms of the curvature of the manifold hosting the quantum states of the electronic subsystem. Namely, the velocity-dependent terms appearing in the Ehrenfest forces on the nuclei acquire a geometrical meaning in terms of the intrinsic curvature of the manifold, while Pulay terms relate to its extrinsic curvature.

Daniel Braun ◽  
Ronny Müller

Abstract Quantum algorithms profit from the interference of quantum states in an exponentially large Hilbert space and the fact that unitary transformations on that Hilbert space can be broken down to universal gates that act only on one or two qubits at the same time. The former aspect renders the direct classical simulation of quantum algorithms difficult. Here we introduce higher-order partial derivatives of a probability distribution of particle positions as a new object that shares these basic properties of quantum mechanical states needed for a quantum algorithm. Discretization of the positions allows one to represent the quantum mechanical state of $\nb$ qubits by $2(\nb+1)$ classical stochastic bits. Based on this, we demonstrate many-particle interference and representation of pure entangled quantum states via derivatives of probability distributions and find the universal set of stochastic maps that correspond to the quantum gates in a universal gate set. We prove that the propagation via the stochastic map built from those universal stochastic maps reproduces up to a prefactor exactly the evolution of the quantum mechanical state with the corresponding quantum algorithm, leading to an automated translation of a quantum algorithm to a stochastic classical algorithm. We implement several well-known quantum algorithms, analyse the scaling of the needed number of realizations with the number of qubits, and highlight the role of destructive interference for the cost of the emulation.

2022 ◽  
Vol 105 (2) ◽  
Yohan Potaux ◽  
Debajyoti Sarkar ◽  
Sergey N. Solodukhin

2022 ◽  
Vol 9 ◽  
Xing-Yan Fan ◽  
Wei-Min Shang ◽  
Jie Zhou ◽  
Hui-Xian Meng ◽  
Jing-Ling Chen

As one of the fundamental traits governing the operation of quantum world, the uncertainty relation, from the perspective of Heisenberg, rules the minimum deviation of two incompatible observations for arbitrary quantum states. Notwithstanding, the original measurements appeared in Heisenberg’s principle are strong such that they may disturb the quantum system itself. Hence an intriguing question is raised: What will happen if the mean values are replaced by weak values in Heisenberg’s uncertainty relation? In this work, we investigate the question in the case of measuring position and momentum in a simple harmonic oscillator via designating one of the eigenkets thereof to the pre-selected state. Astonishingly, the original Heisenberg limit is broken for some post-selected states, designed as a superposition of the pre-selected state and another eigenkets of harmonic oscillator. Moreover, if two distinct coherent states reside in the pre- and post-selected states respectively, the variance reaches the lower bound in common uncertainty principle all the while, which is in accord with the circumstance in Heisenberg’s primitive framework.

Hans Havlicek ◽  
Karl Svozil

Abstract Criteria for the completion of an incomplete basis of, or context in, a four-dimensional Hilbert space by (in)decomposable vectors are given. This, in particular, has consequences for the task of ``completing'' one or more bases or contexts of a (hyper)graph: find a complete faithful orthogonal representation (aka coordinatization) of a hypergraph when only a coordinatization of the intertwining observables is known. In general indecomposability and thus physical entanglement and the encoding of relational properties by quantum states ``prevails'' and occurs more often than separability associated with well defined individual, separable states.

Sign in / Sign up

Export Citation Format

Share Document