scholarly journals A residual-based deep learning approach for ghost imaging

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tong Bian ◽  
Yuxuan Yi ◽  
Jiale Hu ◽  
Yin Zhang ◽  
Yide Wang ◽  
...  
2019 ◽  
Vol 27 (18) ◽  
pp. 25560 ◽  
Author(s):  
Fei Wang ◽  
Hao Wang ◽  
Haichao Wang ◽  
Guowei Li ◽  
Guohai Situ

2021 ◽  
Author(s):  
Chane Moodley ◽  
Bereneice Sephton ◽  
Valeria Rodríguez-Fajardo ◽  
Andrew Forbes

Abstract Quantum ghost imaging offers many advantages over classical imaging, including the ability to probe an object with one wavelength and record the image with another (non-degenerate ghost imaging), but suffers from slow image reconstruction due to sparsity and probabilistic arrival positions of photons. Here, we propose a two-step deep learning approach to establish an optimal early stopping point based on object recognition, even for sparsely filled images. In step one we enhance the reconstructed image after every measurement by a deep convolutional auto encoder, followed by step two in which a classifier is used to recognise the image. We test this approach on a non degenerate ghost imaging setup while varying physical parameters such as the mask type and resolution. We achieved a 5-fold decrease in image acquisition time at a recognition confidence of 75%. The significant reduction in experimental running time is an important step towards real-time ghost imaging, as well as object recognition with few photons, e.g., in the detection of light sensitive structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chané Moodley ◽  
Bereneice Sephton ◽  
Valeria Rodríguez-Fajardo ◽  
Andrew Forbes

AbstractQuantum ghost imaging offers many advantages over classical imaging, including the ability to probe an object with one wavelength and record the image with another (non-degenerate ghost imaging), but suffers from slow image reconstruction due to sparsity and probabilistic arrival positions of photons. Here, we propose a two-step deep learning approach to establish an optimal early stopping point based on object recognition, even for sparsely filled images. In step one we enhance the reconstructed image after every measurement by a deep convolutional auto-encoder, followed by step two in which a classifier is used to recognise the image. We test this approach on a non-degenerate ghost imaging setup while varying physical parameters such as the mask type and resolution. We achieved a fivefold decrease in image acquisition time at a recognition confidence of $$75\%$$ 75 % . The significant reduction in experimental running time is an important step towards real-time ghost imaging, as well as object recognition with few photons, e.g., in the detection of light sensitive structures.


2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


Sign in / Sign up

Export Citation Format

Share Document