CHAPTER 5. Tailoring Mechanochemical Reactivity of Covalent Bonds in Polymers by Non-covalent Interactions

Author(s):  
Huan Zhang ◽  
Linxing Zhang ◽  
Yinjun Chen ◽  
Yangju Lin ◽  
Wengui Weng
Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1305
Author(s):  
Stefano Borocci ◽  
Felice Grandinetti ◽  
Nico Sanna

The structure, stability, and bonding character of fifteen (Ng-H-Ng)+ and (Ng-H-Ng')+ (Ng, Ng' = He-Xe) compounds were explored by theoretical calculations performed at the coupled cluster level of theory. The nature of the stabilizing interactions was, in particular, assayed using a method recently proposed by the authors to classify the chemical bonds involving the noble-gas atoms. The bond distances and dissociation energies of the investigated ions fall in rather large intervals, and follow regular periodic trends, clearly referable to the difference between the proton affinity (PA) of the various Ng and Ng'. These variations are nicely correlated with the bonding situation of the (Ng-H-Ng)+ and (Ng-H-Ng')+. The Ng-H and Ng'-H contacts range, in fact, between strong covalent bonds to weak, non-covalent interactions, and their regular variability clearly illustrates the peculiar capability of the noble gases to undergo interactions covering the entire spectrum of the chemical bond.


2020 ◽  
Vol 22 (28) ◽  
pp. 16421-16430 ◽  
Author(s):  
Ibon Alkorta ◽  
J. Grant Hill ◽  
Anthony C. Legon

Alkali–metal bonds formed by LiR and NaR (R = F, H, CH3) with each of the Lewis bases OC, HCN, H2O, H3N, H2S and H3P are investigated ab initio at the CCSD(T)/AVTZ and CCSD(T)/awCVTZ levels to characterise these non-covalent interactions.


2010 ◽  
Vol 63 (4) ◽  
pp. 611 ◽  
Author(s):  
Jean-Marie Lehn

Dynamers are defined as constitutional dynamic polymers, i.e. polymeric entities whose monomeric components are linked through reversible connections and have therefore the capacity to modify their constitution by exchange and reshuffling of their components. They may be either of supramolecular or molecular nature depending on whether the connections are non-covalent interactions or reversible covalent bonds. They are formed respectively either by polyassociation with interactional recognition or by polycondensation with functional recognition between the connecting subunits. Both types are illustrated by specific examples implementing hydrogen bonding on one hand and formation of imine-type bonds on the other. The dynamic properties confer to dynamers the ability to undergo adaptation and driven evolution under the effect of external chemical or physical triggers. Dynamers thus are constitutional dynamic materials resulting from the application of the principles of constitutional dynamic chemistry to polymer science.


Author(s):  
Abel M. Maharramov ◽  
Kamran T. Mahmudov ◽  
Maximilian N. Kopylovich ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4056 ◽  
Author(s):  
Ghodrat Mahmoudi ◽  
Marjan Abedi ◽  
Simon E. Lawrence ◽  
Ennio Zangrando ◽  
Maria G. Babashkina ◽  
...  

A new supramolecular Pb(II) complex [PbL(NO2)]n was synthesized from Pb(NO3)2, N’-(1-(pyridin-2-yl)ethylidene)isonicotinohydrazide (HL) and NaNO2. [PbL(NO2)]n is constructed from discrete [PbL(NO2)] units with an almost ideal N2O3 square pyramidal coordination environment around Pb(II). The ligand L− is coordinated through the 2-pyridyl N-atom, one aza N-atom, and the carbonyl O-atom. The nitrite ligand binds in a κ2-O,O coordination mode through both O-atoms. The Pb(II) center exhibits a hemidirected coordination geometry with a pronounced coordination gap, which allows a close approach of two additional N-atoms arising from the N=C(O) N-atom of an adjacent molecule and from the 4-pyridyl N-atom from the another adjacent molecule, yielding a N4O3 coordination, constructed from two Pb–N and three Pb–O covalent bonds, and two Pb⋯N tetrel bonds. Dimeric units in the structure of [PbL(NO2)]n are formed by the Pb⋯N=C(O) tetrel bonds and intermolecular electrostatically enforced π+⋯π− stacking interactions between the 2- and 4-pyridyl rings and further stabilized by C–H⋯π intermolecular interactions, formed by one of the methyl H-atoms and the 4-pyridyl ring. These dimers are embedded in a 2D network representing a simplified uninodal 3-connected fes (Shubnikov plane net) topology defined by the point symbol (4∙82). The Hirshfeld surface analysis of [PbL(NO2)] revealed that the intermolecular H⋯X (X = H, C, N, O) contacts occupy an overwhelming majority of the molecular surface of the [PbL(NO2)] coordination unit. Furthermore, the structure is characterized by intermolecular C⋯C and C⋯N interactions, corresponding to the intermolecular π⋯π stacking interactions. Notably, intermolecular Pb⋯N and, most interestingly, Pb⋯H interactions are remarkable contributors to the molecular surface of [PbL(NO2)]. While the former contacts are due to the Pb⋯N tetrel bonds, the latter contacts are mainly due to the interaction with the methyl H-atoms in the π⋯π stacked [PbL(NO2)] molecules. Molecular electrostatic potential (MEP) surface calculations showed marked electrostatic contributions to both the Pb⋯N tetrel bonds and the dimer forming π+⋯π− stacking interactions. Quantum theory of atoms in molecules (QTAIM) analyses underlined the tetrel bonding character of the Pb⋯N interactions. The manifold non-covalent interactions found in this supramolecular assembly are the result of the proper combination of the polyfunctional multidentate pyridine-hydrazide ligand and the small nitrito auxiliary ligand.


Sign in / Sign up

Export Citation Format

Share Document