Organocatalytic formal [2+2] cycloaddition initiated by vinylogous Friedel–Crafts alkylation: enantioselective synthesis of substituted cyclobutane derivatives

2013 ◽  
Vol 49 (41) ◽  
pp. 4625 ◽  
Author(s):  
Guo-Jian Duan ◽  
Jun-Bing Ling ◽  
Wei-Ping Wang ◽  
Yong-Chun Luo ◽  
Peng-Fei Xu
Synlett ◽  
2021 ◽  
Author(s):  
Memg Wang ◽  
Changxu Zhong ◽  
Ping Lu

Enantioselective synthesis of cyclobutane derivatives is still a challenging topic in asymmetric synthesis. [2+2]-Cycloaddition and skeleton rearrangement are two primary strategies to this end. Recently, functionalization of cyclobutanones and cyclobutenones, which are readily available via [2+2]-cycloadditions as prochiral substrates, has emerged as a powerful tool to access versatile four-membered ring compounds. Herein, we summarize some recent advances in these areas from our and other groups.


Author(s):  
Xin-Ming Xu ◽  
Ming Xie ◽  
Jiazhu Li ◽  
Mei-Xiang Wang

An exquisite Pybox/Cu(OTf)2-catalyzed asymmetric tandem reaction of tertiary enamides was developed, which enabled the expeditious synthesis of indolizino[8,7-b]indole derivatives in high yield, excellent enantioselectivity and diastereoselectivity.


2018 ◽  
Author(s):  
Matthew L. Landry ◽  
Grace McKenna ◽  
Noah Burns

A concise and selective synthesis of the dichlorinated meroterpenoid azamerone is described. The paucity of tactics for the synthesis of chiral organochlorides motivated the development of unique strategies for accessing these motifs in enantioenriched forms. The route features a novel enantioselective chloroetherification reaction, a Pd-catalyzed cross-coupling between a quinone diazide and a boronic hemiester, and a late-stage tetrazine [4+2]-cycloaddition/oxidation cascade.


2019 ◽  
Author(s):  
Ming Shang ◽  
Karla S. Feu ◽  
Julien C. Vantourout ◽  
Lisa M. Barton ◽  
Heather L. Osswald ◽  
...  

<div> <div> <div> <p>The union of two powerful transformations, directed C–H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus amenable to rapid diversity incorporation. A simplification of routes to known preclinical drug candidates is presented along with the rapid diversification of an antimalarial compound series. </p> </div> </div> </div>


2018 ◽  
Author(s):  
Matthew L. Landry ◽  
Grace McKenna ◽  
Noah Burns

A concise and selective synthesis of the dichlorinated meroterpenoid azamerone is described. The paucity of tactics for the synthesis of chiral organochlorides motivated the development of unique strategies for accessing these motifs in enantioenriched forms. The route features a novel enantioselective chloroetherification reaction, a Pd-catalyzed cross-coupling between a quinone diazide and a boronic hemiester, and a late-stage tetrazine [4+2]-cycloaddition/oxidation cascade.


Sign in / Sign up

Export Citation Format

Share Document