Toward elevated light harvesting: efficient dye-sensitized solar cells with titanium dioxide/silica photoanodes

RSC Advances ◽  
2015 ◽  
Vol 5 (57) ◽  
pp. 46260-46266 ◽  
Author(s):  
Peizhi Yang ◽  
Qunwei Tang ◽  
Benlin He

Light harvesting titanium dioxide/silica photoanodes are used for dye-sensitized solar cells.

Coatings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Wen-Yao Huang ◽  
Tung-Li Hsieh

In this study, we prepared and analyzed the properties of hill-like hierarchically structured titanium dioxide (TiO2) photoanodes for dye-sensitized solar cells (DSSCs). We expected that the presence of appropriately aggregated TiO2 clusters in the photoanode layer would translate to relatively strong light scattering and dye loading, increasing the photovoltaic efficiency. A detailed light-harvesting study was performed by employing polyvinyl alcohol (PVA) polymers of different molecular weights as binders for the aggregation of the TiO2 nanoparticles (P-25 Degussa). Hence, we obtained a series of TiO2 films, presenting a variety of morphologies. Their reflection, as well as absorbance of light by the attached dye, the amount of dye loading, and the performance of the fabricated DSSC devices were investigated. Our optimized device, with a relatively high dye loading and good light harvesting ability, was able to enhance the short-circuit current (Jsc) in the DSSCs by 23%.


2011 ◽  
Vol 196 (4) ◽  
pp. 2416-2421 ◽  
Author(s):  
Kun-Mu Lee ◽  
Ying-Chan Hsu ◽  
Masashi Ikegami ◽  
Tsutomu Miyasaka ◽  
K.R. Justin Thomas ◽  
...  

2013 ◽  
Vol 68 (1) ◽  
pp. 34-37 ◽  
Author(s):  
N. V. Golubko ◽  
Yu. E. Roginskaya ◽  
A. E. Ozimova ◽  
D. Yu. Godovskii ◽  
D. Yu. Paraschuk

2015 ◽  
Vol 347 ◽  
pp. 636-642 ◽  
Author(s):  
Penglei Su ◽  
Hongyi Li ◽  
Jinshu Wang ◽  
Junshu Wu ◽  
Bingxin Zhao ◽  
...  

2018 ◽  
Vol 5 (2) ◽  
pp. 171054 ◽  
Author(s):  
J. Llanos ◽  
I. Brito ◽  
D. Espinoza ◽  
Ramkumar Sekar ◽  
P. Manidurai

Y 1.86 Eu 0.14 WO 6 phosphors were prepared using a solid-state reaction method. Their optical properties were analysed, and they was mixed with TiO 2 , sintered, and used as a photoelectrode (PE) in dye-sensitized solar cells (DSSCs). The as-prepared photoelectrode was characterized by photoluminescence spectroscopy, diffuse reflectance, electrochemical impedance spectroscopy (EIS) and X-ray diffraction. The photoelectric conversion efficiency of the DSSC with TiO 2 :Y 1.86 Eu 0.14 WO 6 (100:2.5) was 25.8% higher than that of a DSCC using pure TiO 2 as PE. This high efficiency is due to the ability of the luminescent material to convert ultraviolet radiation from the sun to visible radiation, thus improving the solar light harvesting of the DSSC.


Sign in / Sign up

Export Citation Format

Share Document