scholarly journals A down-shifting Eu 3+ -doped Y 2 WO 6 /TiO 2 photoelectrode for improved light harvesting in dye-sensitized solar cells

2018 ◽  
Vol 5 (2) ◽  
pp. 171054 ◽  
Author(s):  
J. Llanos ◽  
I. Brito ◽  
D. Espinoza ◽  
Ramkumar Sekar ◽  
P. Manidurai

Y 1.86 Eu 0.14 WO 6 phosphors were prepared using a solid-state reaction method. Their optical properties were analysed, and they was mixed with TiO 2 , sintered, and used as a photoelectrode (PE) in dye-sensitized solar cells (DSSCs). The as-prepared photoelectrode was characterized by photoluminescence spectroscopy, diffuse reflectance, electrochemical impedance spectroscopy (EIS) and X-ray diffraction. The photoelectric conversion efficiency of the DSSC with TiO 2 :Y 1.86 Eu 0.14 WO 6 (100:2.5) was 25.8% higher than that of a DSCC using pure TiO 2 as PE. This high efficiency is due to the ability of the luminescent material to convert ultraviolet radiation from the sun to visible radiation, thus improving the solar light harvesting of the DSSC.

RSC Advances ◽  
2014 ◽  
Vol 4 (25) ◽  
pp. 12944-12949 ◽  
Author(s):  
Yamin Feng ◽  
Jianhui Zhu ◽  
Jian Jiang ◽  
Wenwu Wang ◽  
Gaoxiang Meng ◽  
...  

A novel hierarchical double-layered photoelectrode by integrating TiO2 nanorods (NRs) in and on a film of P25 NPs has been successfully synthesized on an FTO substrate; the hierarchical film electrodes applied in DSSCs exhibit a photoelectric conversion efficiency as high as 8.62%.


2015 ◽  
Vol 44 (42) ◽  
pp. 18553-18562 ◽  
Author(s):  
Sha-Sha Xu ◽  
Wei-Lin Chen ◽  
Yan-Hua Wang ◽  
Yang-Guang Li ◽  
Zhu-Jun Liu ◽  
...  

[Cu(C12H8N2)2]2[V2W4O19]·4H2O-doped TiO2 composites were introduced into the dye-sensitized solar cells as co-sensitizers in N719-sensitized photoanodes to enhance the photoelectric conversion efficiency.


2020 ◽  
pp. 16-21
Author(s):  
PHITCHAPHORN KHAMMEE ◽  
YUWALEE UNPAPROM ◽  
UBONWAN SUBHASAEN ◽  
RAMESHPRABU RAMARAJ

Recently, dye-sensitized solar cells (DSSC) have concerned significant attention attributable to their material preparation process, architectural and environmental compatibility, also low cost and effective photoelectric conversion efficiency. Therefore, this study aimed to use potential plant materials for DSSC. This research presents the extraction of natural pigments from yellow cotton flowers (Cochlospermum regium). In addition, the natural pigments were revealed that outstanding advantages, including a wide absorption range (visible light), easy extraction method, safe, innocuous pigments, inexpensive, complete biodegradation and ecofriendly. Methanol was used as a solvent extraction for the yellow cotton flower. The chlorophylls and carotenoid pigments extractions were estimated by a UV-visible spectrometer. The chlorophyll-a, chlorophyll-b, and carotenoid yield were 0.719±0.061 µg/ml, 1.484±0.107 µg/ml and 7.743±0.141 µg/ml, respectively. Thus, this study results suggested that yellow cotton flowers containing reasonable amounts appealable in the DSSC production.


2012 ◽  
Vol 430-432 ◽  
pp. 631-635
Author(s):  
Shu Hong Liu ◽  
Gui Shan Liu ◽  
Xiao Yue Shen ◽  
Zhi Qiang Hu

The carbon counter electrodes for Dye-sensitized solar cells (DSSCs) were deposited on FTO glass using graphite target by bipolar pulse magnetron sputtering. The effects of sputtering pressure on the structures and properties for carbon films were investigated. The carbon bond structure was analyzed by Raman spectra. The sheet resistance of carbon film was detected by four-probe tester. The transmittance was tested by UV-visible spectrum. The performance of DSSCs was tested by solar simulator after the cells assembled. The results indicated that the ratio of ID/IG reduced, the degree of graphitization decreased, sheet resistance raised, transmittance increased and photoelectric conversion efficiency reduced with the increasing of sputtering pressure.


2012 ◽  
Vol 629 ◽  
pp. 332-338 ◽  
Author(s):  
Zhi Hua Tian ◽  
Jian Xi Yao ◽  
Mi Na Guli

TiO2 films with three-dimensional web-like structure have been prepared by the photo polymerization-induced phase separation method (PIPS). Scanning electron microscopy and X-ray diffraction were used to characterize the as-prepared TiO2 films. The results showed that the film texture could be tuned by changing the composition of the precursor solution. The TiO2 film with web-like structure exhibited high photocatalytic activity for the degradation of methylene blue (MB) dye. The as-prepared films were used as the photo-anodes in dye-sensitized solar cells (DSCs). The photoelectric conversion efficiency of the DSCs was significantly enhanced by changing the POGTA/TTB in the precursor solution. Because of the increased dye adsorption active sites and efficient electron transport in the TiO2 anode film, a photoelectric conversion efficiency of 3.015% was obtained.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Kenshiro Uzaki ◽  
Terumi Nishimura ◽  
Jun Usagawa ◽  
Shuzi Hayase ◽  
Mitsuru Kono ◽  
...  

Directions to high efficiency dye-sensitized solar cells (DSCs) are reviewed in terms of light harvesting and charge collection. Three dimensional DSCs characterized by a double dye layer electrode, a floating electrode, and a fiber type electrode are proposed. The potentiality of each structure was discussed by using each model cell. Transparent conductive layerless electrodes were the key structures in these cells. Fabrication processes and fundamental performances are reported. Finally, it is concluded that dyes having high photoconversion efficiency in the near IR and IR regions are essential for realizing these tandem and hybrid cells.


2014 ◽  
Vol 953-954 ◽  
pp. 1095-1098 ◽  
Author(s):  
Jun Zhang ◽  
Ya Han Wu ◽  
Fang Xue ◽  
Meng Jun Yuan ◽  
Yan Huo ◽  
...  

The structural morphology, arrangement of the nanocrystalline particles, porosity factor, surface state, crystalline phase and specific area of photoelectrode film have great influence on photoelectric performance of dye sensitized solar cells (DSSCs). At present, using TiO2 as the photoelectrode in the DSSC material has achieved very good photoelectric conversion efficiency. In this paper, the plating method is adopted to directly deposited the titanium coating on the conductive glass substrate, oxidizing the surface of titanium film, so that it is generated on the surface of titanium dioxide oxidation layer. Making it as the DSSC photoelectrode, obtained relative high photoelectric conversion efficiency.


RSC Advances ◽  
2015 ◽  
Vol 5 (62) ◽  
pp. 50483-50493 ◽  
Author(s):  
Malihe Afrooz ◽  
Hossein Dehghani

In this study, triphenyl phosphate (TPP) is applied as an effective and inexpensive additive in the dye sensitized solar cells (DSSCs) and an increase in the photoelectric conversion efficiency is obtained of almost 24%.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Che-Lung Lee ◽  
Wen-Hsi Lee ◽  
Cheng-Hsien Yang

Triazoloisoquinoline-based organic dyestuffs were synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs). After cosensitization with ruthenium complex, the triazoloisoquinoline-based organic dyestuffs overcame the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. This method also fills the blanks of ruthenium dyestuff sensitized TiO2film and forms a compact insulating molecular layer due to the nature of small molecular organic dyestuffs. The incident photon-to-electron conversion efficiency of N719 at shorter wavelength regions is 49%. After addition of a triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency from 6.23% to 7.84%, and the overall conversion efficiency increased by about 26%. As a consequence, this low molecular weight organic dyestuff is a promising candidate as coadsorbent and cosensitizer for highly efficient dye-sensitized solar cells.


Sign in / Sign up

Export Citation Format

Share Document