scholarly journals Free energy pathways of a multistable liquid crystal device

Soft Matter ◽  
2015 ◽  
Vol 11 (24) ◽  
pp. 4809-4817 ◽  
Author(s):  
Halim Kusumaatmaja ◽  
Apala Majumdar

Understanding the free energy landscape of a multistable liquid crystal device in terms of its minimum free energy configurations, transition states, free energy barriers and minimum energy pathways.

2017 ◽  
Vol 147 (15) ◽  
pp. 152718 ◽  
Author(s):  
Clark Templeton ◽  
Szu-Hua Chen ◽  
Arman Fathizadeh ◽  
Ron Elber

2021 ◽  
Author(s):  
Xiaofeng Chu ◽  
Xin Su ◽  
Mingdong Liu ◽  
Li Li ◽  
Tianhao Li ◽  
...  

Researchers commonly anneal metals, alloys, and semiconductors to repair defects and improve microstructures via recrystallization. Theoretical studies indicate simulated annealing on biological macromolecules helps predict the final structures with minimum free energy. Experimental validation of this homogenizing effect and further exploration of its applications are fascinating scientific questions that remain elusive. Here, we chose the apo-state 70S ribosome from Escherichia coli as a model, wherein the 30S subunit undergoes a thermally driven inter-subunit rotation and exhibits substantial structural flexibility as well as distinct free energy. We experimentally demonstrate that annealing at a fast cooling rate enhances the 70S ribosome homogeneity and improves local resolution on the 30S subunit. After annealing, the 70S ribosome is in a nonrotated state with respect to corresponding intermediate structures in unannealed or heated ribosomes, and exhibits a minimum energy in the free energy landscape. One can readily crystallize these minimum-energy ribosomes, which have great potential for synchronizing proteins on a single-molecule level. Our experimental results are consistent with theoretical analysis on the temperature-dependent Boltzmann distribution, and offer a facile yet robust approach to enhance protein stability, which is ideal for high-resolution cryogenic electron microscopy. Beyond structure determination, annealing can be extended to study protein folding and explore conformational and energy landscape.


2019 ◽  
Author(s):  
Xiaohui Wang ◽  
Zhaoxi Sun

<p>Correct calculation of the variation of free energy upon base flipping is crucial in understanding the dynamics of DNA systems. The free energy landscape along the flipping pathway gives the thermodynamic stability and the flexibility of base-paired states. Although numerous free energy simulations are performed in the base flipping cases, no theoretically rigorous nonequilibrium techniques are devised and employed to investigate the thermodynamics of base flipping. In the current work, we report a general nonequilibrium stratification scheme for efficient calculation of the free energy landscape of base flipping in DNA duplex. We carefully monitor the convergence behavior of the equilibrium sampling based free energy simulation and the nonequilibrium stratification and determine the empirical length of time blocks required for converged sampling. Comparison between the performances of equilibrium umbrella sampling and nonequilibrium stratification is given. The results show that nonequilibrium free energy simulation is able to give similar accuracy and efficiency compared with the equilibrium enhanced sampling technique in the base flipping cases. We further test a convergence criterion we previously proposed and it comes out that the convergence behavior determined by this criterion agrees with those given by the time-invariant behavior of PMF and the nonlinear dependence of standard deviation on the sample size. </p>


ChemBioChem ◽  
2020 ◽  
Author(s):  
fareed aboul-ela ◽  
Abdallah S Abdelsatter ◽  
Youssef Mansour

Sign in / Sign up

Export Citation Format

Share Document