convergence criterion
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 60)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 6 (2) ◽  
pp. 31-38
Author(s):  
Duy Long Ta ◽  
Huy Hiep Nguyen ◽  
Tuan Khai Nguyen ◽  
Vinh Thanh Tran ◽  
Huu Tiep Nguyen

This paper presents a computational scheme using MCNP5 and COBRA-EN for coupling neutronics/thermal hydraulics calculation of a VVER-1000 fuel assembly. A master program was written using the PERL script language to build the corresponding inputs for the MCNP5 and COBRA-EN calculations and to manage the coupling scheme. The hexagonal coolant channels have been used in the thermal hydraulics model using CORBRA-EN to simplify the coupling scheme. The results of two successive iterations were compared with an assigned convergence criterion and the loop calculation can be broken when the convergence criterion is satisfied. Numerical calculation has been performed based on a UO2fuel assembly of the VVER-1000 reactor.


2021 ◽  
Vol 13 (18) ◽  
pp. 10216
Author(s):  
Youcef Belkhier ◽  
Nasim Ullah ◽  
Ahmad Aziz Al Alahmadi

Permanent magnet synchronous generator (PMSG) with a back-to-back power converter is one of the commonly used technologies in tidal power generation schemes. However, the nonlinear dynamics and time-varying parameters of this kind of conversion system make the controller computation a challenging task. In the present paper, a novel intelligent control method based on the passivity concept with a simple structure is proposed. This proposed strategy consists of passivity-based speed control (PBSC) combined with a fuzzy logic method to address the robustness problems faced by conventional control techniques such as proportional-integral (PI) control. The proposed method extracts the maximum power from the tidal energy, compensates for the uncertainty in a damped way where the entire dynamics of the PMSG are considered when designing the control law. The fuzzy logic controller is selected, which makes the proposed strategy intelligent to compute the damping gains to make the closed-loop passive and approximate the unstructured dynamics of the PMSG. Thus, the robustness property of the closed-loop system is considerably increased. The regulation of DC voltage and reactive power to their desired values are the principal objectives of the present work. The proposed method is used to control the machine-side converter (MSC), while a conventional PI method is adopted to control the grid-side converter (GSC). Dynamic simulations show that the DC voltage and reactive power errors are extremely reduced with the proposed strategy; ±0.002 for the DC-link voltage and ±0.000015 in the case of the reactive power. Moreover, the lowest steady-state error and better convergence criterion are shown by the proposed control (0.3 × 10−3 s). Generally, the proposed candidate offers high robustness, fast speed convergence, and high efficiency over the other benchmark nonlinear strategies. Moreover, the proposed controller was also validated in a processor in the loop (PIL) experiment using Texas Instruments (TI) Launchpad.


Author(s):  
P. P. Matus

In this paper, Lax’s equivalence theorem, which states that stability is a necessary and sufficient condition for its convergence in the presence of an approximation of a difference scheme, is generalized to abstract nonlinear difference problems with operators acting in finite dimensional Banach spaces. In contrast to linear finite-difference methods, such a criterion in the nonlinear case can be established only for unconditionally stable computational methods, when the corresponding a priori estimates take place for sufficiently small |h| ≤ h0. In this case, the value of h0 depends both on the consistency of discrete and continuous norms in Banach spaces, and on the magnitude of the perturbation of the input data of the problem. The proven convergence criterion is used to study the stability of difference schemes approximating quasilinear parabolic equations with nonlinearities of unbounded growth with respect to the initial data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thérèse E. Malliavin

AbstractProtein structure determination is undergoing a change of perspective due to the larger importance taken in biology by the disordered regions of biomolecules. In such cases, the convergence criterion is more difficult to set up and the size of the conformational space is a obstacle to exhaustive exploration. A pipeline is proposed here to exhaustively sample protein conformations using backbone angle limits obtained by nuclear magnetic resonance (NMR), and then to determine the populations of conformations. The pipeline is applied to a tandem domain of the protein whirlin. An original approach, derived from a reformulation of the Distance Geometry Problem is used to enumerate the conformations of the linker connecting the two domains. Specifically designed procedure then permit to assemble the domains to the linker conformations and to optimize the tandem domain conformations with respect to two sets of NMR measurements: residual dipolar couplings and paramagnetic resonance enhancements. The relative populations of optimized conformations are finally determined by fitting small angle X-ray scattering (SAXS) data. The most populated conformation of the tandem domain is a semi-closed one, fully closed and more extended conformations being in minority, in agreement with previous observations. The SAXS and NMR data show different influences on the determination of populations.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1942
Author(s):  
Ioannis K. Argyros

A plethora of sufficient convergence criteria has been provided for single-step iterative methods to solve Banach space valued operator equations. However, an interesting question remains unanswered: is it possible to provide unified convergence criteria for single-step iterative methods, which are weaker than earlier ones without additional hypotheses? The answer is yes. In particular, we provide only one sufficient convergence criterion suitable for single-step methods. Moreover, we also give a finer convergence analysis. Numerical experiments involving boundary value problems and Hammerstein-like integral equations complete this paper.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nirmalendu Biswas ◽  
Nirmal Kumar Manna ◽  
Dipak Kumar Mandal ◽  
Rama Subba Reddy Gorla

Purpose This study aims to investigate thermo-bioconvection of oxytactic microorganisms occurring in a nanofluid-saturated porous lid-driven cavity in the presence of the magnetic field. The heating is provided through a bell-shaped curved bottom wall heated isothermally. The effects of the peak height of the curved bottom wall, bioconvection Rayleigh number (Rb), Darcy number (Da), Hartmann number (Ha), Peclet number (Pe), Lewis number (Le) and Grashof number (Gr) on the flow structure, temperature and the iso-concentrations of oxygen and microorganisms are examined and explained systematically. The local and global, characteristics of heat transfer and oxygen concentration, are estimated through the Nusselt number (Nu) and Sherwood number (Sh), respectively. Design/methodology/approach The governing equations of continuity, momentum, energy and additionally consisting of species transport equations for oxygen concentration and population density of microorganisms, are discretized by the finite volume method. The evolved linearized algebraic equations are solved iteratively through the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The computation domain has meshed in non-uniform staggered grids. The entire computations are carried out through an in-house developed code written in FORTRAN following the SIMPLE algorithm. The third-order upwind and second-order central difference schemes are used for handling the advection and diffusion terms, respectively. The convergence criterion for the iterative process of achieving the final solution is set as 10–8 and 10–10, respectively, for the maximum residuals and the mass defect. Findings The results show that the flow and temperature distribution along with the iso-concentrations of oxygen and microorganisms are markedly affected by the curvature of the bottom wall. A secondary circulation is developed in the cavity that changes the flow physics significantly. The Nu increases with the peak height of the curved bottom wall and Da; however, it decreases with Ha and Rb. The Sh increases with Da but decreases with Ha and the peak height of the curved wall. Research limitations/implications A similar study of bioconvection could be extended further considering thermal radiation, chemical attraction, gravity, light, etc. Practical implications The outcomes of this investigation could be used in diverse fields of multi-physical applications such as in food industries, chemical processing equipment, fuel cell technology and enhanced oil recovery. Originality/value The insights of bioconvection of oxytactic microorganisms using a curved bottom surface along with other physical issues such as nanofluid, porous substance and magnetic field are addressed systematically and thoroughly.


2021 ◽  
Vol 14 (7) ◽  
pp. 4593-4616
Author(s):  
Daniel R. Shapero ◽  
Jessica A. Badgeley ◽  
Andrew O. Hoffman ◽  
Ian R. Joughin

Abstract. We introduce a new software package called “icepack” for modeling the flow of glaciers and ice sheets. The icepack package is built on the finite element modeling library Firedrake, which uses the Unified Form Language (UFL), a domain-specific language embedded into Python for describing weak forms of partial differential equations. The diagnostic models in icepack are formulated through action principles that are specified in UFL. The components of each action functional can be substituted for different forms of the user's choosing, which makes it easy to experiment with the model physics. The action functional itself can be used to define a solver convergence criterion that is independent of the mesh and requires little tuning on the part of the user. The icepack package includes the 2D shallow ice and shallow stream models. We have also defined a 3D hybrid model based on spectral semi-discretization of the Blatter–Pattyn equations. Finally, icepack includes a Gauss–Newton solver for inverse problems that runs substantially faster than the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method often used in the glaciological literature. The overall design philosophy of icepack is to be as usable as possible for a wide a swath of the glaciological community, including both experts and novices in computational science.


2021 ◽  
Vol 18 (4) ◽  
pp. 172988142110277
Author(s):  
Tiehui Zhang ◽  
Jun Liu ◽  
Hengyu Li ◽  
Shaorong Xie ◽  
Luo Jun

In this article, the coordination control problem of group tracking consensus is considered for networked nonholonomic mobile multirobot systems (NNMMRSs). This problem framework generalizes the findings of complete consensus in NNMMRSs and group consensus in networked Lagrangian systems (NLSs), enjoying capacious application backgrounds. By leveraging a kinematic controller embedded in the adaptive torque control protocols, a new convergence criterion of group consensus is established. In contrast to the formulation under strict algebraic assumptions, it is found that group tracking consensus for NNMMRSs can be realized under a simple geometrical condition. The system stability analysis is dictated by the property of network topology with acyclic partition. Finally, the theoretical achievements are verified by illustrative numerical examples. The results show an interesting phenomenon that, for NNMMRSs, the state responses exhibit negative correlation with the algebraic connectivity and coupling strength.


Sign in / Sign up

Export Citation Format

Share Document