Energy-yield prediction for II–VI-based thin-film tandem solar cells

2016 ◽  
Vol 9 (8) ◽  
pp. 2644-2653 ◽  
Author(s):  
Jonathan P. Mailoa ◽  
Mitchell Lee ◽  
Ian M. Peters ◽  
Tonio Buonassisi ◽  
Alex Panchula ◽  
...  

Polycrystalline, thin-film tandem solar cells that leverage commercial II–VI semiconductor technologies as the top cell could overcome the practical conversion-efficiency limits of single-junction solar cells. In this paper we provide energy-yield calculation of a solar cell – single-junction and tandem – in a real-world climate conditions.

2015 ◽  
Vol 44 (1) ◽  
pp. 26-32 ◽  
Author(s):  
F. Aziz ◽  
Z. Ahmad ◽  
S.M. Abdullah ◽  
K. Sulaiman ◽  
M.H. Sayyad

Purpose – The purpose of this paper is to study the optical and electrical characteristics of a single-junction solar cell based on a green-colour dye vanadyl 2,9,16, 23-tetraphenoxy-29H, 31H-phthalocyanine (VOPcPhO). The use of soluble vanadyl phthalocyanine derivative makes it very attractive for photovoltaic applications due to its tunable properties and high solubility. Design/methodology/approach – A photoactive layer of VOPcPhO has been sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes to produce a ITO/PEDOT:PSS/VOPcPhO/Al photovoltaic device. The VOPcPhO thin film is deposited by a simple spin coating technique. To obtain the optimal thickness for the solar cell device, different thicknesses of the photoactive layer, achieved by manipulating the spin rate, have been investigated. Findings – The device exhibited photovoltaic effect with the values of Jsc, Voc and FF equal to 5.26 × 10-6 A/cm2, 0.621 V and 0.33, respectively. The electronic parameters of the cell have been obtained from the analysis of current-voltage characteristics measured in dark. The values of ideality factor and barrier height were found to be 2.69 and 0.416 eV, respectively. The optical examination showed that the material is sensitive to light in the UV region between 270 nm and 410 nm, as well as in the visible spectrum within the range of 630 nm and 750 nm. Research limitations/implications – The solar cell based on a single layer of vanadyl phthalocyanine derivative results in low efficiency, which can be enhanced by introducing a variety of donor materials to form bulk heterojunction solar cells. Practical implications – The spin coating technique provides a simple, less expensive and effective approach for preparing thin films. Originality/value – A novel thin-film, single-junction organic solar cell, fabricated by using VOPcPhO, has been investigated for the first time ever. The vanadyl phthalocyanine derivative together with a donor material will have potential application for improved efficiency of the solar cells.


2019 ◽  
Vol 3 (8) ◽  
pp. 1995-2005 ◽  
Author(s):  
Eike Köhnen ◽  
Marko Jošt ◽  
Anna Belen Morales-Vilches ◽  
Philipp Tockhorn ◽  
Amran Al-Ashouri ◽  
...  

We present a highly efficient monolithic perovskite/silicon tandem solar cell and analyze the tandem performance as a function of photocurrent mismatch with important implications for future device and energy yield optimizations.


Author(s):  
Ramez Hosseinian Ahangharnejhad ◽  
Adam B Phillips ◽  
Ilke Celik ◽  
Zhaoning Song ◽  
Yanfa Yan ◽  
...  

2014 ◽  
Vol 54 (5) ◽  
pp. 341-347
Author(s):  
Peter Pikna ◽  
Vlastimil Píč ◽  
Vítězslav Benda ◽  
Antonín Fejfar

Thin film polycrystalline silicon (poly-Si) solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ). Tested temperature of the sample (55°C – 110°C) was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.


2012 ◽  
Vol 1426 ◽  
pp. 125-130
Author(s):  
Y.W. Tseng ◽  
Y.H. Lin ◽  
H.J. Hsu ◽  
C.H. Hsu ◽  
C.C. Tsai

ABSTRACTIn this work, the development of hydrogenated amorphous silicon oxide (a-SiOx:H) absorber, a-SiOx:H single-junction solar cells and a-SiOx:H/a-Si1-xGex:H tandem solar cells were presented. The oxygen content of the a-SiOx:H materials controlled by changing CO2-to-SiH4 flow ratio had significant influence on its opto-electrical property. As CO2/SiH4 increased from 0 to 2, the bandgap increased from 1.75 to 2.13 eV while the photo-conductivity decreased from 8.25×10-6 to 1.02×10-8 S/cm. Photo-response of over 105 can be obtained as the bandgap was approximately 1.90 eV. The performance of single-junction solar cells revealed a better efficiency can be obtained as the absorber bandgap was in the range of 1.83 to 1.90 eV. Further increase of the absorber bandgap may lead to the increase in bulk defect density which deteriorated the cell efficiency. Finally, a-SiOx:H/a-Si1-xGex:H tandem solar cell was fabricated with the absorber bandgap of 1.90 eV in the top cell. By matching the current between the component cells, the tandem cell efficiency of 7.38% has been achieved.


2015 ◽  
Vol 37 ◽  
pp. 434 ◽  
Author(s):  
Razagh Hafezi ◽  
Soroush Karimi ◽  
Sharie Jamalzae ◽  
Masoud Jabbari

“Micromorph” tandem solar cells consisting of a microcrystalline silicon bottom cell and an amorphous silicon top cell are considered as one of the most promising new thin-film silicon solar-cell concepts. Their promise lies in the hope of simultaneously achieving high conversion efficiencies at relatively low manufacturing costs. The concept was introduced by IMT Neuchâtel, based on the VHF-GD (very high frequency glow discharge) deposition method. The key element of the micromorph cell is the hydrogenated microcrystalline silicon bottom cell that opens new perspectives for low-temperature thin-film crystalline silicon technology. This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (_c-Si:H) thin films (layers), both deposited at low temperatures (200_C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. Finally, present performances and future perspectives for a high efficiency ‘micromorph’ (mc-Si:Hya-Si:H) tandem solar cells are discussed.


2003 ◽  
Vol 11 (6) ◽  
pp. 359-375 ◽  
Author(s):  
Timothy J. Coutts ◽  
J. Scott Ward ◽  
David L. Young ◽  
Keith A. Emery ◽  
Timothy A. Gessert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document