scholarly journals A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells

2017 ◽  
Vol 10 (4) ◽  
pp. 964-971 ◽  
Author(s):  
Yu Chen ◽  
Yan Chen ◽  
Dong Ding ◽  
Yong Ding ◽  
YongMan Choi ◽  
...  

A hybrid catalyst coating dramatically enhances the electrocatalytic activity and durability of a solid oxide fuel cell cathode.

2020 ◽  
Vol 478 ◽  
pp. 228763 ◽  
Author(s):  
Fangfang Wang ◽  
Haruo Kishimoto ◽  
Tomohiro Ishiyama ◽  
Katherine Develos-Bagarinao ◽  
Katsuhiko Yamaji ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


2018 ◽  
Vol 43 (1) ◽  
pp. 21-42 ◽  
Author(s):  
Guanchen Li ◽  
Michael R. von Spakovsky ◽  
Fengyu Shen ◽  
Kathy Lu

AbstractOxygen reduction in a solid oxide fuel cell cathode involves a nonequilibrium process of coupled mass and heat diffusion and electrochemical and chemical reactions. These phenomena occur at multiple temporal and spatial scales, making the modeling, especially in the transient regime, very difficult. Nonetheless, multiscale models are needed to improve the understanding of oxygen reduction and guide cathode design. Of particular importance for long-term operation are microstructure degradation and chromium oxide poisoning both of which degrade cathode performance. Existing methods are phenomenological or empirical in nature and their application limited to the continuum realm with quantum effects not captured. In contrast, steepest-entropy-ascent quantum thermodynamics can be used to model nonequilibrium processes (even those far-from equilibrium) at all scales. The nonequilibrium relaxation is characterized by entropy generation, which can unify coupled phenomena into one framework to model transient and steady behavior. The results reveal the effects on performance of the different timescales of the varied phenomena involved and their coupling. Results are included here for the effects of chromium oxide concentrations on cathode output as is a parametric study of the effects of interconnect-three-phase-boundary length, oxygen mean free path, and adsorption site effectiveness. A qualitative comparison with experimental results is made.


ChemSusChem ◽  
2017 ◽  
Vol 10 (9) ◽  
pp. 2008-2014 ◽  
Author(s):  
Takashi Nakamura ◽  
Ryo Oike ◽  
Yuta Kimura ◽  
Yusuke Tamenori ◽  
Tatsuya Kawada ◽  
...  

2020 ◽  
Vol 8 (48) ◽  
pp. 25978-25985
Author(s):  
Jun Li ◽  
Jie Hou ◽  
Xiuan Xi ◽  
Ying Lu ◽  
Mingming Li ◽  
...  

Symmetrical solid oxide fuel cell reactor with BaZr0.1Ce0.7Y0.1Yb0.1O3−δ as electrolyte and La0.6Sr0.4Fe0.8Nb0.1Cu0.1O3−δ as electrodes is applied to cogenerate ethylene and electricity.


2014 ◽  
Vol 2 (42) ◽  
pp. 18106-18114 ◽  
Author(s):  
Elena Stefan ◽  
Paul A. Connor ◽  
Abul K. Azad ◽  
John T. S. Irvine

The paper investigates the structure and properties of novel electrode scaffold materials for solid oxide fuel cell (SOFC), such as MgMxCr2−xO4, (M = Li, Mg, Ti, Fe, Cu, Ga).


2020 ◽  
Vol 8 (16) ◽  
pp. 7704-7712 ◽  
Author(s):  
Qi Wang ◽  
Jie Hou ◽  
Yun Fan ◽  
Xiu-an Xi ◽  
Jun Li ◽  
...  

The performance of low-temperature solid-oxide fuel cells (LT-SOFCs) is heavily dependent on the electrocatalytic activity of the cathode toward the oxygen reduction reaction (ORR).


Author(s):  
Kang Wang ◽  
Pingying Zeng ◽  
Jeongmin Ahn

This work presents the performance of YSZ-SDC multilayered anode-supported solid oxide fuel cell (AS-SOFC). The anode-supported SOFC showed an extraordinary fuel cell performance of ∼1.57 W/cm2 by wet spraying a SDC layer onto YSZ layer. It was found that the fuel cell performance varied with the sintering temperature of fuel cell. At the high sintering temperatures, the reactions between YSZ and SDC have a significant effect on the fuel cell performance.


Sign in / Sign up

Export Citation Format

Share Document