scholarly journals Synthesis of cobalt ferrite nanoparticles by constant pH co-precipitation and their high catalytic activity in CO oxidation

2017 ◽  
Vol 41 (15) ◽  
pp. 7356-7363 ◽  
Author(s):  
Jasmine Thomas ◽  
Nygil Thomas ◽  
Frank Girgsdies ◽  
Malte Beherns ◽  
Xing Huang ◽  
...  

A series of cobalt ferrite samples were synthesized from a metal nitrate solution at constant pH between 9 and 12 by the controlled co-precipitation method without any surfactant.

2013 ◽  
Vol 320 ◽  
pp. 665-669
Author(s):  
Chao Zhang ◽  
Yong Ji Song ◽  
Feng Hua Shi ◽  
Cui Qing Li ◽  
Hong Wang

In this paper, hexaaluminate oxides LaMAl12O19-σwere prepared by using M=Cu ,Ce and Zn as active components to substitute Al in the hexaaluminate lattice by co-precipitation method. The structure and properties of LaMAl11O19-σcatalyst was characterized with XRD and BET. The results showed LaCuAl11O19-σexhibited significant high catalytic activity for the decomposition reaction of N2O. Under the simulated in situ condition, LaCuAl11O19-σalso indicated significant catalytic activity and stability, with N2O conversion of 90% at 635°C.


2019 ◽  
Vol 69 (12) ◽  
pp. 3345-3348
Author(s):  
Maria Colie ◽  
Dan Eduard Mihaiescu ◽  
Daniela Istrati ◽  
Adrian Vasile Surdu ◽  
Bogdan Vasile ◽  
...  

In this paper we describe the synthesis of a core-shell material using yttrium superconducting ceramic material (YBCO) and cobalt ferrite nanoparticles in order to obtain a nanostructured material with magnetic properties. The advantages of such material aim the selective deposition of nanofilms oriented in magnetic fields. To obtain this core-shell material, the solutions of the nitrates were first obtained by dissolving the salts in demineralised water. The suspension with cobalt ferrite nanoparticles was obtained by co-precipitation method. To obtain YBa2Cu3O7-�- coated magnetic nanoparticles by autocombustion reaction the solutions of nitrates and citric acid were used. The ratio of the metal ions: Y:Ba:Cu was 1:2:3, and between the oxidant and the reducing agent was used a citrate / nitrate mass ratio equal with 0.7. The final material was analyzed by X-ray diffraction (XRD), electronic scanning microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM).


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Jinxing LI ◽  
Abdelrahman A. Badawy ◽  
Guanben DU ◽  
Xiaojian ZHOU ◽  
Hisham A. Essawy

Cobalt ferrite was prepared by co-precipitation from cobalt and iron soluble precursors in presence of fulvic acid at different pH values, namely, 6 and 8 and compared with the same preparation in absence of fulvic acid. The presence of fulvic acid is expected to bind metal ions through bridging before co-precipitation and mineralization. The extent of binding is determined according to the pH of the process. This influences the mineralization of the resulting cobalt ferrite and the crystallization/ordering of its lattice. In addition, the extent of residual ferric oxide is also a function of the efficiency of binding process. This route of modification for the co-precipitation process was found to be accompanied by enhanced surface area and total pore volume for most of the prepared samples. The involvement of these oxides as catalysts in the photo-catalytic degradation of phenol from wastewater was found to contribute very efficiently and the removal reached about 88% in some cases, which can be attributed to olation and oxolation process of the formed nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document