co oxidation
Recently Published Documents


TOTAL DOCUMENTS

5306
(FIVE YEARS 985)

H-INDEX

150
(FIVE YEARS 19)

2022 ◽  
Vol 3 ◽  
Author(s):  
Keke Mao ◽  
Haifeng Lv ◽  
Xiuling Li ◽  
Jiajia Cai

Perfect boron nitride (BN) nanotubes are chemically inert, and hardly considered as catalysts. Nevertheless, metal wire encapsulated BN nanotubes show extraordinarily high chemical activity. We report nickel (Ni) nanowire encapsulated BN(8.0) and BN(9.0) nanotubes toward O2 activation and CO oxidization on the basis of first-principles calculations. Our results suggest that Ni wire encapsulated BN(8.0) and BN(9.0) nanotubes can easily adsorb and activate O2 molecules to form peroxo or superoxo species exothermically. Meanwhile, superoxo species are ready to react with CO molecules forming OCOO intermediate state and finally yielding CO2 molecules. Meanwhile, the rate-limiting step barrier is only 0.637 eV, implying excellent performance for CO oxidation on Ni nanowire encapsulated BN nanotubes. Furthermore, encapsulation of nickel wire improves the catalytic activity of BN nanotubes by facilitating electron transfer from Ni wire to BN nanotubes, which facilitates the adsorption of highly electronegative O2 molecules and subsequent CO oxidation. This study provides a practical and efficient strategy for activating O2 on a metal encapsulated BN nanotube toward CO oxidation.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 145
Author(s):  
Yiwei Luo ◽  
Yonglong Li ◽  
Conghui Wang ◽  
Jing Wang ◽  
Wenming Liu ◽  
...  

Copper catalysts have been extensively studied for CO oxidation at low temperatures. Previous findings on the stability of such catalysts, on the other hand, revealed that they deactivated badly under extreme circumstances. Therefore, in this work, a series of KCC−1-supported copper oxide catalysts were successfully prepared by impregnation method, of which 5% CuO/KCC−1 exhibited the best activity: CO could be completely converted at 120 °C. The 5% CuO/KCC−1 catalyst exhibited better thermal stability, which is mainly attributed to the large specific surface area of KCC−1 that facilitates the high dispersion of CuO species, and because the dendritic layered walls can lengthen the movement distances from particle-to-particle, thus helping to slow down the tendency of active components to sinter. In addition, the 5% CuO/KCC−1 has abundant mesoporous and surface active oxygen species, which are beneficial to the mass transfer and promote the adsorption of CO and the decomposition of Cu+–CO species, thus improving the CO oxidation performance of the catalyst.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Daniela González-Varela ◽  
Daniel G. Araiza ◽  
Gabriela Díaz ◽  
Heriberto Pfeiffer

A series of LaNiO3 materials were synthesized by the EDTA–citrate complexing method, modifying different physicochemical conditions. The LaNiO3 samples were calcined between 600 and 800 °C and characterized by XRD, SEM, XPS, CO-TPD, TG, DT, and N2 adsorption. The results evidence that although all the samples presented the same crystal phase, LaNiO3 as expected, some microstructural and superficial features varied as a function of the calcination temperature. Then, LaNiO3 samples were tested as catalysts of the CO oxidation process, a reaction never thoroughly analyzed employing this material. The catalytic results showed that LaNiO3 samples calcined at temperatures of 600 and 700 °C reached complete CO conversions at ~240 °C, while the sample thermally treated at 800 °C only achieved a 100% of CO conversion at temperatures higher than 300 °C. DRIFTS and XRD were used for studying the reaction mechanism and the catalysts’ structural stability, respectively. Finally, the obtained results were compared with different Ni-containing materials used in the same catalytic process, establishing that LaNiO3 has adequate properties for the CO oxidation process.


Fuels ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 31-43
Author(s):  
Thomas Ruh ◽  
Richard Buchinger ◽  
Lorenz Lindenthal ◽  
Florian Schrenk ◽  
Christoph Rameshan

Catalytic tests to assess the performance of mixed perovskite-type oxides (La0.9Ca0.1FeO3-δ, La0.6Ca0.4FeO3-δ, Nd0.9Ca0.1FeO3-δ, Nd0.6Ca0.4FeO3-δ, Nd0.6Ca0.4Fe0.9Co0.1O3-δ, Nd0.6Ca0.4Fe0.97Ni0.03O3-δ, and LSF) with respect to CO oxidation are presented as well as characterization of the materials by XRD and SEM. Perovskites are a highly versatile class of materials due to their flexible composition and their ability to incorporate dopants easily. CO oxidation is a widely used “probe reaction” for heterogeneous catalysts. In this study, it is demonstrated how tuning the composition of the catalyst material (choice of A-site cation, A-site and B-site doping) greatly influences the activity. Changing the A-site cation to Nd3+ or increasing the concentration of Ca2+ as A-site dopant improves the performance of the catalyst. Additional B-site doping (e.g., Co) affects the performance as well—in the case of Co-doping by shifting ignition temperature to lower temperatures. Thus, perovskites offer an interesting approach to intelligent catalyst design and tuning the specific properties towards desired applications.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Andraž Kravos ◽  
Tomaž Katrašnik

Achieving efficient solid oxide fuel cell operation and simultaneous prevention of degradation effects calls for the development of precise on-line monitoring and control tools based on predictive, computationally fast models. The originality of the proposed modelling approach originates from the hypothesis that the innovative derivation procedure enables the development of a thermodynamically consistent multi-species electrochemical model that considers the electrochemical co-oxidation of carbon monoxide and hydrogen in a closed-form. The latter is achieved by coupling the equations for anodic reaction rates with the equation for anodic potential. Furthermore, the newly derived model is capable of accommodating the diffusive transport of gaseous species through the gas diffusion layer, yielding a computationally efficient quasi-one-dimensional model. This resolves a persistent knowledge gap, as the proposed modelling approach enables the modelling of multi-species fuels in a closed form, resulting in very high computational efficiency, and thus enable the model’s real-time capability. Multiple validation steps against polarisation curves with different fuel mixtures confirm the capability of the newly developed model to replicate experimental data. Furthermore, the presented results confirm the capability of the model to accurately simulate outside the calibrated variation space under different operating conditions and reformate mixtures. These functionalities position the proposed model as a beyond state-of-the-art tool for model supported development and control applications.


2022 ◽  
Vol 518 ◽  
pp. 112053
Author(s):  
Luong Xuan Dien ◽  
Huynh Dang Chinh ◽  
Nguyen Kim Nga ◽  
Rafael Luque ◽  
Sameh M. Osman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document