total pore volume
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 188)

H-INDEX

15
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Xiaowen Qi ◽  
Enze Zhou ◽  
Xuefei Wu ◽  
Siyi Luo ◽  
Yanggang Song

In this study, the dewatered sludge from the sewage plant and the open-hearth steel slag of the steel plant are used as raw materials. As two wastes, they were mixed and pyrolyzed to prepare a composite absorbent. Further, the adsorption mechanism of the adsorbent to chromium ions in the sewage is explored. The pyrolysis reaction behavior of sludge mixed with steel slag was studied by the thermogravimetric analysis technology. SEM, BET, and XPS were used to analyze the specific surface area, pore size distribution, and pore structure characteristics of pyrolysis products, respectively. Moreover, a comprehensive analysis of the adsorbent was carried out for the adsorption mechanism of hexavalent chromium ions. The results show that the addition of steel slag promotes the pyrolysis of the sludge in each stage. When the content of steel slag is 80%, the increases of reaction rate are the most obvious with the largest increase of weight loss rate in each stage. The SEM results show that the enrichment of sludge on metal oxides is enhanced in the high-temperature range (600–700°C). Besides, when the content of steel slag is 40–60%, the mixture’s growth rate of the specific surface area can reach 600% and the growth rate of total pore volume can reach 350% (the situations of sludge as the baseline). Regarding the measurement of Cr(VI), the adsorption rate of the steel-slag solution is 50.93% and that of the sludge solution is 69%. However, the adsorption rate can be increased to 95% when the steel slag and sludge were mixed as an adsorption solution. In conclusion, the adsorption mechanism of Cr(VI) by additives is controlled by both physical and chemical processes. The present study provides a theoretical basis and technical support for the scientific and reasonable utilization of sludge and steel slag.


2021 ◽  
Vol 29 (6) ◽  
pp. 47-53
Author(s):  
M. A. Zemlyanova ◽  
M. S. Stepankov ◽  
A. M. Ignatova

Introduction. Active use in various spheres of economic activity and the large-scale nature of production determine the relevance of studying the effects of copper (II) oxide nanoparticles (CuO NPs) on the body during the oral route of intake. Material and methods. Particle size was determined by scanning electron microscopy and dynamic laser light scattering; specific surface area - Brunauer, Emmett and Teller; total pore volume - Barrett, Joyner and Khalenda. Acute oral toxicity of CuO NPs was studied in Wistar rats in accordance with GOST 32644-2014, multiple oral toxicity was studied by the Lim method. After repeated exposure, the biochemical and hematological parameters of the blood, the concentration of copper in the organs, and pathomorphological changes in the tissues of the organs were determined. Results. The size of CuO NPs in the composition of the native powder was 45.86 nm, in the aqueous suspension - 307.40 nm, the specific surface area was 17.70 m2/g, and the total pore volume was 0.056 cm3/g. According to the results of a single oral exposure, the LD50 value was > 2000 mg / kg body weight, which corresponds to 3 (GOST 12.1.007-76) and 4 (GOST 32644-2014) hazard classes. With repeated oral exposure, an increase in the levels of activity of ALT, AST, ALP, LDH, amylase, AOA and MDA was noted; the relative number of segmented neutrophils is increased, the number of leukocytes is increased, the relative number of lymphocytes is reduced. The concentration of copper under the action of NPs increases in the lungs, liver, stomach, intestines, kidneys, brain and blood. Pathomorphological changes in the tissues of the liver, kidneys, stomach, small and large intestines and lungs were established. Conclusion. The results obtained prove the presence of toxic properties of CuO NPs and can be used in the development of preventive measures for workers and consumers in contact with products containing CuO NPs.


2021 ◽  
Vol 21 (2) ◽  
pp. 211
Author(s):  
Norakmalah Mohd Zawawi ◽  
Fazlena Hamzah ◽  
Harumi Veny ◽  
Miradatul Najwa Mohd Rodhi ◽  
Mahanim Sarif

This paper presents the utilization of bamboo residue from the chopstick industry as modified carbon (AC) for supercapacitor application.  Bamboo activated carbon (BAC) was activated using Potassium hydroxide (KOH) and assisted with microwave ultrasonic (Mw-U) irradiation to enhance the properties of bamboo activated carbon (BAC). Different microwave (Mw) power intensities of 100 W, 300 W, and 500 W at 30 minutes of retention time have been applied on activation and the carbonization process was conducted at temperature 800°C. The BAC was analyzed for the morphology using a scanning electron microscope and proximate and ultimate analysis. Then BAC with the higher surface area was subjected to the electrochemical analysis to determine the electrochemical properties. The study indicated Mw-U irradiation improved the morphology of the BAC, eliminated the impurity of the sample, and gave higher carbon content of BAC. The findings show that lower Mw-U irradiation power provided a higher surface area of BAC. The surface area of 646.87 m2/g and total pore volume of 2.8x10-1 cm3/g was obtained with a power intensity of Mw-U activation at 100 W. While, electrochemical properties, the specific capacitance (Cs) of BAC was 77 Fg-1 at 25 mVs-1 in 1 mol/L KOH of electrolyte for cyclic voltammetry (CV) which indicates the ability of the prepared BAC to be used as an electrode in supercapacitor application. This study determined that Mw-U irradiation can improve the properties of the bamboo during chemical activation and formed BAC that consists of supercapacitor properties.


Author(s):  
Ibrahem M. A. Hasan ◽  
Ahmed R. Tawfik ◽  
Fawzy H. Assaf

Abstract Zinc oxide nanoparticles (ZnO NPs) were biosynthesized. According to GC/MS analysis, chalcone; the main phytochemical; is probably complexed with Zn ions that are then oxidized to ZnO NPs by atmospheric O2 during heating. The ZnO NPs were characterized by TG, FTIR, XRD, FESEM, TEM, eEDAX, and BET surface area analysis. Sphere-like ZnO NPs were formed with 11 nm mean crystallite size, 5.2 m2 g−1 surface area, and 0.02 cm3 g−1 total pore volume. The synthesized ZnO showed excellent photocatalytic degradation (96.5±0.24% in 1 hour at 25 °C) of malachite green (MG) in aqueous solutions under UV light at optimum conditions; pH 10, MG initial concentration of 20 mg L−1, and ZnO dose of 1.5 g L−1. Also, ZnO showed very good reusability (92.9± 0.2% after 5 runs). The experimental data obeyed pseudo-first-order kinetics (R2=0.92). The photocatalysis process is dependent on the following species in the order: OH. > electron/positive hole pairs > O2.−. Moreover, photodegradation efficiency decreased in the presence of CO32−, HCO3−, and Cl−, but increased in the presence of NO3−, and SO42− ions. Thus, the green synthesized ZnO NPs can be applied as an efficient photocatalyst for the removal of MG from aqueous media.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhe Huang ◽  
Jinyu Xu ◽  
Binglin Leng ◽  
Weibo Ren ◽  
Sen Chang ◽  
...  

This paper is about a study on the mechanical properties of a new polymer-cement composite (PCC) in constant elongation, tension, and shear. The study explored the effects of powder-liquid ratio and cement ratio on the mechanical properties of PCC through detecting the strength, deformation, and energy consumption of specimens under different powder-liquid ratios and cement ratios. In addition, scanning electron microscope and mercury injection apparatus were used for an in-depth analysis on the micromorphology and pore structure features of PCC under different powder-liquid ratios and cement ratios to explore the influence of powder-liquid ratio and cement ratio of the micromechanical properties of PCC. The results showed that, with the increase of powder-liquid ratio and cement ratio, the constant elongation adhesion strength of PCC decreased, and, at a high powder-liquid ratio (0.55) or a high cement ratio (0.5), the constant elongation adhesion strength of PCC completely disappeared. Meanwhile, with the increase of powder-liquid ratio and cement ratio, the tensile shear strength of PCC increased, while the deformation capacity of PCC decreased. The optimal ranges of powder-liquid ratio and cement ratio for PCC were 0.35–0.4 and 0.3-0.4, respectively. Furthermore, the increased powder-liquid ratio and cement ratio made the total pore volume decreased and pore structure refined, which improved the compactness of PCC, thus influencing the performance of PCC macroscopically. An achievement for the study is a flexible composite material, which was formulated with the polymer film as continuous base phase, as well as the inorganic composition and cement hydrates as dispersion phase. The material can effectively improve the economy and practicability of cementation of fissures for airfield pavement.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Kusdianto Kusdianto ◽  
Meditha Hudandini ◽  
Dianping Jiang ◽  
Masaru Kubo ◽  
Manabu Shimada

Ag–TiO2 nanocomposite films, based of Ag and TiO2 nanoparticles, were fabricated in a one-step aerosol route employing the simultaneous plasma-enhanced chemical vapor deposition and physical vapor deposition systems. The as-fabricated films were subjected to different heating rates (3 to 60 °C/min) with a constant annealing temperature of 600 °C to observe the significant changes in the properties (e.g., nanoparticle size, crystalline size, crystallite phase, surface area) toward the photocatalytic performance. The photocatalytic activity was evaluated by the measurement of the degradation of a methylene blue aqueous solution under UV light irradiation, and the results revealed that it gradually increased with the increase in the heating rate, caused by the increased Brunauer–Emmett–Teller (BET) specific surface area and total pore volume.


2021 ◽  
Vol 19 ◽  
Author(s):  
Sara Azargashb ◽  
Afshin Sarvary ◽  
Seyed Karim Hassaninejad-Darzi

Abstract: The present study explores a new method for the fabrication of NaA nanozeolite as a simple and efficient catalyst for the production of 3-aminoimidazo [1,2-a] pyridines through the 3-component reaction of aldehydes, 2-aminoperidines and isocyanides under solvent-free conditions. The production of organic template free (OTF) NaA nanozeolite was performed at room temperature. The prepared nanozeolite was identified by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electronic microscopy (FESEM), N2 sorption isotherm and particle size analysis (PSA). The particle sizes of synthesized spherical NaA nanozeolite were under 100 nm via the FESEM method. The BET surface area, total pore volume and mean pore diameter of the created sample were attained to be 362 m2g-1, 0.44 cm3 g-1 and 5.9 nm, respectively. The developed method has some advantages such as OTF production of NaA nanozeolite, simple synthesis method with short reaction time and easy separation using filtration and the ability to recycle and reuse of catalyst several times without reducing its efficiency.


Author(s):  
Zahra Abedi ◽  
Desiree Leistenschneider ◽  
Douglas Ivey ◽  
Weixing Chen

Abstract Birnessite type Mn oxide (potassium birnessite hydrate) powder (as-δ-MnO2) with a layered microstructure was prepared via a hydrothermal process. To improve its capacitive performance, the microstructure was thermally modified (annealed) at 400 oC (400-δ-MnO2) in a N2 reducing environment. By removing the hydrated cations (K+) layers inserted between the main layers of birnessite, damaging the microstructure, intercalation/deintercalation of the electrolyte species (Li+1) became more effective. Characterization of as-δ-MnO2 and 400-δ-MnO2 revealed that no phase transformation occurred during the annealing process. The microstructure became less crystalline and the total pore volume increased from 0.20 cm3 g-1 to 0.43 cm3 g-1, while the oxidation state of Mn remained 4+ after annealing the as-δ-MnO2 at 400 oC. The 400-δ-MnO2 sample was then coated on asphaltene derived activated carbon fibers (ACF-400-δ-MnO2) to improve the performance by making use of the high electrical conductivity and capacitive behavior of ACF. Coating the 400-δ-MnO2 sample led to a significant increase in the capacitance (328 F g-1 and 195 F g-1 for ACF-400-δ-MnO2 and 400-δ-MnO2 at 0.4 A g-1, respectively), improved energy and power values (~7 kW kg-1 at ~4.2 Wh kg-1 for ACF-400-δ-MnO2 and 240 W kg-1 at 2.4 Wh kg-1 for 400-δ-MnO2) and improved cycling behavior.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1371
Author(s):  
Duc Cuong Nguyen ◽  
Trung Tuyen Bui ◽  
Yeong Beom Cho ◽  
Yong Shin Kim

Expanded vermiculite (eVMT) has been studied as a risk-free, general-purpose absorbent for liquid hazards due to its excellent thermal and chemical stability. Here, vermiculite was expanded by two steps: exfoliation by 30 wt% H2O2 treatment at 60 °C and subsequent expansion by microwave heating. This two-step expansion produced more homogenously separated concertina-like eVMTs with a higher total pore volume of 7.75 cm3 g−1 than the conventional thermal method. The two-step eVMT was found to be greatly superior to the thermal and commercial silver counterparts in hazardous liquid-uptake performance. The uptake was simply interpreted as a physical infilling process of a liquid into the eVMT pores, and the spontaneous hazard removal with a great capacity was discussed with the large pore volume of two-step eVMT and its suitable pore dimensions for capillary action. As a practical device, a prototype absorbent assembly made of these eVMTs demonstrated the successful mitigation of liquid hazards on an impermeable surface.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2467
Author(s):  
Paulo A. A. Ferreira ◽  
Mariana V. Coronas ◽  
Max K. L. Dantas ◽  
André Somavilla ◽  
Gustavo Brunetto ◽  
...  

Animal manure may be a valuable resource for the development of agricultural sustainability. We proposed to verify the feasibility of applications of three types of animal manures to improve soil attributes and to sustain crop yields under intensive cropping and no-tillage systems. The field experiment was established in 2004 on Typic Hapludalf soil with pig slurry (PS), cattle slurry (CS), pig deep-litter (PL), mineral fertilizer (MF) and a non-fertilized treatment. From 2004 to 2015, were grown black oat, maize, forage turnip, black beans, and wheat. Soil samples were taken after winter 2014 and summer 2015, and submitted to chemical, physical, microbiological and biochemical analyses. Animal manures increased soil pH, but MF caused acidification of soil. The PL and CS applications reduced soil density, and increased total pore volume and hydraulic conductivity. Animal manures increased soil P fractions, total organic carbon, total nitrogen, stimulated soil respiration, and had higher activities of glucosidase and acid phosphatase. Wheat had its biggest dry matter and grain yields with MF, but maize grain yields with CS were higher than MF. All indicators pointed that application of animal manure converges to an interesting strategy to recycle nutrients at farmyard level and to contribute to global sustainability.


Sign in / Sign up

Export Citation Format

Share Document