effect of temperature
Recently Published Documents


TOTAL DOCUMENTS

20433
(FIVE YEARS 3465)

H-INDEX

138
(FIVE YEARS 16)

2022 ◽  
Vol 215 ◽  
pp. 49-66
Author(s):  
Ángel H. Moreno ◽  
Ángel Javier Aguirre ◽  
Rafael Hernández Maqueda ◽  
Geovanny Jiménez Jiménez ◽  
Carlos Torres Miño

2022 ◽  
Vol 27 (3) ◽  
pp. 1-26
Author(s):  
Mahabub Hasan Mahalat ◽  
Suraj Mandal ◽  
Anindan Mondal ◽  
Bibhash Sen ◽  
Rajat Subhra Chakraborty

Secure authentication of any Internet-of-Things (IoT) device becomes the utmost necessity due to the lack of specifically designed IoT standards and intrinsic vulnerabilities with limited resources and heterogeneous technologies. Despite the suitability of arbiter physically unclonable function (APUF) among other PUF variants for the IoT applications, implementing it on field-programmable gate arrays (FPGAs) is challenging. This work presents the complete characterization of the path changing switch (PCS) 1 based APUF on two different families of FPGA, like Spartan-3E (90 nm CMOS) and Artix-7 (28 nm CMOS). A comprehensive study of the existing tuning concept for programmable delay logic (PDL) based APUF implemented on FPGA is presented, leading to establishment of its practical infeasibility. We investigate the entropy, randomness properties of the PCS based APUF suitable for practical applications, and the effect of temperature variation signifying the adequate tolerance against environmental variation. The XOR composition of PCS based APUF is introduced to boost performance and security. The robustness of the PCS based APUF against machine learning based modeling attack is evaluated, showing similar characteristics as the conventional APUF. Experimental results validate the efficacy of PCS based APUF with a little hardware footprint removing the paucity of lightweight security primitive for IoT.


Author(s):  
Bjørn Kristian Fiskvik Bache ◽  
Pernille Wiersholm ◽  
Priscilla Paniagua ◽  
Arnfinn Emdal

Author(s):  
Aslina Abu Bakar ◽  
Muhammad Aiman Najmi bin Rodzali ◽  
Rosfariza Radzali ◽  
Azlina Idris ◽  
Ahmad Rashidy Razali

<p>In this research the dielectric constant of three types of Malaysian honey has been investigated using a non-destructive measurement technique. The objective of this research is to assess the dielectric constant of the three types of honey in Malaysia using a non-destructive measurement technique known as an open-ended coaxial probe in the frequency range from 100 MHz to 10 GHz frequency. Analysis on the effect water concentration in honey on the dielectric constant and the effect of temperature on dielectric constant of honey has been conducted. The three types of honey that have been chosen to be investigated in this project are stingless bee honey, wild honey and commercial (organic) honey and together their water adulterated samples. For this research, the probe had been set up by setting a range of frequency from 100 MHz to 10 GHz and needs to be calibrated with three calibration methods namely open, short and reference water. From the result it was found that the higher the temperature of the honey and the higher percentage of water content in the honey, the dielectric constant is increased. The dielectric constants of all honeys decreased with increasing frequency in the measured frequency range and increased with increase percentage of water content and temperature.</p>


2022 ◽  
Vol 32 (1) ◽  
pp. 16-20
Author(s):  
Mary Vargo ◽  
James E. Faust

The effect of average daily temperature (ADT) on flower bud development and subsequent time to flower was investigated on hybrid impatiens (Impatiens ×hybrida) cultivars Compact Electric Orange, Compact Hot Coral, and Compact Orchid Blush. Plants with a visible flower bud measuring 2 mm in width were placed in one of the four greenhouses with temperature setpoints ranging from 16 to 28 °C. Flower bud width was measured every 3 days in each ADT treatment until flowering. The subsequent days to flower (DTF) from the onset of a visible bud decreased from 36 to 27 days as the ADT increased from 17 to 28 °C. The DTF from visible bud varied by <3 days among the three cultivars across all temperatures; therefore, cultivar data were pooled to create a stronger prediction model. A logistic formula was used to predict the remaining DTF as a function of flower bud width and ADT. The model accurately described the effect of bud width and ADT on flowering time within ±3 days for 87% of the actual DTF across all three cultivars. The resulting flower development model provides greenhouse growers with a guide for manipulating temperature to produce flowering plants for specific market dates based on flower bud width measurements.


Author(s):  
Amreen Bashir ◽  
Peter A. Lambert ◽  
Yvonne Stedman ◽  
Anthony C. Hilton

The survival on stainless steel of ten Salmonella isolates from food factory, clinical and veterinary sources was investigated. Stainless steel coupons inoculated with Salmonella were dried and stored at a range of temperatures and relative humidity (RH) levels representing factory conditions. Viability was determined from 1 to 22 days. Survival curves obtained for most isolates and storage conditions displayed exponential inactivation described by a log-linear model. Survival was affected by environmental temperatures and RH with decimal reduction times (DRTs) ranging from <1 day to 18 days. At 25 °C/15% RH, all isolates survived at levels of 103 to 105 cfu for >22 days. Furthermore, temperatures and RH independently influenced survival on stainless steel; increasing temperatures between 10 °C and 37 °C and increasing RH levels from 30–70% both decreased the DRT values. Survival curves displaying a shoulder followed by exponential death were obtained for three isolates at 10 °C/70% RH. Inactivation kinetics for these were described by modified Weibull models, suggesting that cumulative injury occurs before cellular inactivation. This study highlights the need to control temperature and RH to limit microbial persistence in the food manufacturing environment, particularly during the factory shut-down period for cleaning when higher temperature/humidity levels could be introduced.


2022 ◽  
Author(s):  
A R Degheidy ◽  
A M AbuAli ◽  
Elkenany B Elkenany

Abstract The temperature dependence of acoustic velocities, thermal properties, and phonon frequencies, mechanical, electronic, and optical properties for the InPxAsySb1-x-y/InAs system has been studied. The physical properties of the binary components InSb, InP, and InAs that constitute the quaternary alloy were used in this research. The study has been done using the empirical pseudo-potential method (EPM) under the virtual crystal approximation (VCA). The thermal properties, phonon frequencies, and acoustic velocities for the InPxAsySb1-x-y/InAs system under the effect of temperature have not been fully studied. Therefore, we have focused on these properties under the influence of temperature. Due to the lack of the published theoretical and experimental values on these properties, our findings will provide a significant reference for future experimental work.


2022 ◽  
Author(s):  
Martin Vojík ◽  
Martina Kadlecová ◽  
Josef Kutlvašr ◽  
Jan Pergl ◽  
Kateřina Berchová Bímová

Abstract This paper describes germination and cytological variability in two popular ornamental and potentially invasive species, lamb’s ear Stachys byzantina and rose campion Lychnis coronaria. Both xerophytic species have the potential to invade natural habitats across Europe and create viable naturalised populations, with subsequent impacts on native vegetation. To assess the species’ invasiveness, seeds were collected from naturalised populations and germination rate recorded under different temperature regimes. Flow cytometry, used to record cytological variability, indicated that all populations of both species were cytologically homogeneous. Germination success, a key spreading factor in both species, was significantly influenced by temperature, with final germination of L. coronaria being extremely high at temperatures > 15/10 °C (98.5%) and extremely low at temperatures < 10/5 °C (2.9%). In comparison, final germination in S. byzantina highest at 22/15 °C (55.6%), reducing to 40.3% at 15/10 °C and just 0.3% at temperatures < 10/5 °C. No significant differences in germination rate were observed between escaping and non-escaping populations, though there were differences between particular populations. Our results indicate germination temperature limits between species consistent with sizes of primary distribution and distance between primary and secondary distribution borders. However, the observed germination rates allow for successful generative reproduction of both species over their secondary distribution areas, suggesting that these species are likely to become invasive species of European grasslands soon.


2022 ◽  
pp. 2100179
Author(s):  
Teresa Delgado ◽  
Nando Gartmann ◽  
Bernhard Walfort ◽  
Fabio LaMattina ◽  
Markus Pollnau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document