Mapping of Bernal and non-Bernal stacking domains in bilayer graphene using infrared nanoscopy

Nanoscale ◽  
2017 ◽  
Vol 9 (12) ◽  
pp. 4191-4195 ◽  
Author(s):  
Gyouil Jeong ◽  
Boogeon Choi ◽  
Deok-Soo Kim ◽  
Seongjin Ahn ◽  
Baekwon Park ◽  
...  
2008 ◽  
Vol 78 (11) ◽  
Author(s):  
Y. C. Huang ◽  
C. P. Chang ◽  
M. F. Lin

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hatef Sadeghi ◽  
Daniel T. H. Lai ◽  
Jean-Michel Redoute ◽  
Aladin Zayegh

Our focus in this study is on characterizing the capacitance voltage (C-V) behavior of Bernal stacking bilayer graphene (BG) and trilayer graphene (TG) as the channel of FET devices. The analytical models of quantum capacitance (QC) of BG and TG are presented. Although QC is smaller than the classic capacitance in conventional devices, its contribution to the total metal oxide semiconductor capacitor in graphene-based FET devices becomes significant in the nanoscale. Our calculation shows that QC increases with gate voltage in both BG and TG and decreases with temperature with some fluctuations. However, in bilayer graphene the fluctuation is higher due to its tunable band structure with external electric fields. In similar temperature and size, QC in metal oxide BG is higher than metal oxide TG configuration. Moreover, in both BG and TG, total capacitance is more affected by classic capacitance as the distance between gate electrode and channel increases. However, QC is more dominant when the channel becomes thinner into the nanoscale, and therefore we mostly deal with quantum capacitance in top gate in contrast with bottom gate that the classic capacitance is dominant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan Da Liao ◽  
Jian Kang ◽  
Clara N. Breiø ◽  
Xiao Yan Xu ◽  
Han-Qing Wu ◽  
...  

2021 ◽  
Vol 103 (24) ◽  
Author(s):  
Rui Lyu ◽  
Zachary Tuchfeld ◽  
Nishchhal Verma ◽  
Haidong Tian ◽  
Kenji Watanabe ◽  
...  

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Ipsita Mandal ◽  
Jia Yao ◽  
Erich J. Mueller

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Justin H. Wilson ◽  
Yixing Fu ◽  
S. Das Sarma ◽  
J. H. Pixley

Sign in / Sign up

Export Citation Format

Share Document