broken symmetries
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 36)

H-INDEX

37
(FIVE YEARS 5)

2021 ◽  
Vol 118 (47) ◽  
pp. e2105190118
Author(s):  
Sunghun Kim ◽  
Jong Mok Ok ◽  
Hanbit Oh ◽  
Chang Il Kwon ◽  
Yi Zhang ◽  
...  

Complex electronic phases in strongly correlated electron systems are manifested by broken symmetries in the low-energy electronic states. Some mysterious phases, however, exhibit intriguing energy gap opening without an apparent signature of symmetry breaking (e.g., high-TC cuprates and heavy fermion superconductors). Here, we report an unconventional gap opening in a heterostructured, iron-based superconductor Sr2VO3FeAs across a phase transition at T0 ∼150 K. Using angle-resolved photoemission spectroscopy, we identify that a fully isotropic gap opens selectively on one of the Fermi surfaces with finite warping along the interlayer direction. This band selectivity is incompatible with conventional gap opening mechanisms associated with symmetry breaking. These findings, together with the unusual field-dependent magnetoresistance, suggest that the Kondo-type proximity coupling of itinerant Fe electrons to localized V spin plays a role in stabilizing the exotic phase, which may serve as a distinct precursor state for unconventional superconductivity.


2021 ◽  
pp. 287-303
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

The phenomenon of spontaneous symmetry breaking is a common feature of phase transitions in both classical and quantum physics. In a first part we study this phenomenon for the case of a global internal symmetry and give a simple proof of Goldstone’s theorem. We show that a massless excitation appears, corresponding to every generator of a spontaneously broken symmetry. In a second part we extend these ideas to the case of gauge symmetries and derive the Brout–Englert–Higgs mechanism. We show that the gauge boson associated with the spontaneously broken generator acquires a mass and the corresponding field, which would have been the Goldstone boson, decouples and disappears. Its degree of freedom is used to allow the transition from a massless to a massive vector field.


2021 ◽  
Author(s):  
Simo Pajovic ◽  
Yoichiro Tsurimaki ◽  
Xin Qian ◽  
Svetlana Boriskina

2021 ◽  
pp. 52-64
Author(s):  
Adrian P Sutton

Symmetry arises not only in the invariance of an object to certain operations, but also in invariance of the equations governing motion of particles. Noether’s theorem connects continuous symmetries of equations of motion to conservation laws. The concept of broken symmetry arises in phase changes and topological defects, such as dislocations and disclinations. The principle of symmetry compensation reveals a deep sense in which symmetry is never destroyed – broken symmetries relate variants of an object displaying reduced symmetry. Symmetry plays a fundamental role in characterising the physical properties of crystals through Neumann’s principle. The concept of quasiperiodicity is introduced and it is shown how it is related to periodicity in a higher dimensional crystal.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Pedro D. Alvarez ◽  
Lucas Delage ◽  
Mauricio Valenzuela ◽  
Jorge Zanelli

Abstract We construct a gauge theory based in the supergroup G = SU(2, 2|2) that generalizes MacDowell-Mansouri supergravity. This is done introducing an extended notion of Hodge operator in the form of an outer automorphism of su(2, 2|2)-valued 2-form tensors. The model closely resembles a Yang-Mills theory — including the action principle, equations of motion and gauge transformations — which avoids the use of the otherwise complicated component formalism. The theory enjoys H = SO(3, 1) × ℝ × U(1) × SU(2) off-shell symmetry whilst the broken symmetries G/H, translation-type symmetries and supersymmetry, can be recovered on surface of integrability conditions of the equations of motion, for which it suffices the Rarita-Schwinger equation and torsion-like constraints to hold. Using the matter ansatz —projecting the 1 ⊗ 1/2 reducible representation into the spin-1/2 irreducible sector — we obtain (chiral) fermion models with gauge and gravity interactions.


2021 ◽  
Vol 8 (2) ◽  
pp. 021406
Author(s):  
G. Buchs ◽  
M. Marganska ◽  
J. W. González ◽  
K. Eimre ◽  
C. A. Pignedoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document