electric potential
Recently Published Documents


TOTAL DOCUMENTS

1787
(FIVE YEARS 276)

H-INDEX

52
(FIVE YEARS 5)

Author(s):  
Jae Won Lee ◽  
Hyun Heo ◽  
Dong Kee Sohn ◽  
Han Seo Ko
Keyword(s):  

2022 ◽  
Author(s):  
Azad Hussain ◽  
Sobia Akbar ◽  
Muhammad Arshad ◽  
Sohail Nadeem

Abstract The probation is made to study the stagnation point flow of non-Newtonian fluid for Riga plate. Electric potential and magnetic flux density with time dependent flow is examined. Mesh for electric potential, magnetic flux, laminar flow with physics controlled fine, finer and extra finer option is also represented in details. Inquisition is solved in COMSOL Multi-physics 5.4 to obtain the results of surface magnitude, counter, table surface, magnetic flux, electric potential and coarse mesh for velocity, pressure, magnetic and electric fields. Coarse mesh of electric insulation and magnetic flux of the geometry is created with 6067, 18688 domain elements and 901, 1448 boundary elements. Tables for velocity surface, mesh domain, quadrilateral and triangular elements are also presented. Obtained results are discussed with graphs and tables in details.


2022 ◽  
Vol 115 ◽  
pp. 103656
Author(s):  
Mohamed Sofiane Bendilmi ◽  
Thami Zeghloul ◽  
Zehira Ziari ◽  
Karim Medles ◽  
Lucian Dascalescu

2022 ◽  
Vol 2153 (1) ◽  
pp. 012012
Author(s):  
D F Devia ◽  
F Mesa ◽  
D M Devia

Abstract This document analyses the distribution of the electric potential due to two electrodes that excite a membrane. The solution obtained numerically was approximated by means of the finite element method. The qualitative analysis of the results allows to know the intensity of the electric potential along the membrane in such a way that said electrodes that excite the membrane can be strategically located for academic and clinical purposes. Additionally, in a two- dimensional domain that represents the geometry of a membrane, the finite element method was executed, which allowed the behavior of the potential to be analyzed for an electric pulse at any point in the membrane. The above was generated by two electrodes.


Author(s):  
Hannah May McCann ◽  
Leandro Beltrachini

Abstract Source imaging is a principal objective for electroencephalography (EEG), the solutions of which require forward problem (FP) computations characterising the electric potential distribution on the scalp due to known sources. Additionally, the EEG-FP is dependent upon realistic, anatomically correct volume conductors and accurate tissue conductivities, where the skull is particularly important. Skull conductivity, however, deviates according to bone composition and the presence of adult sutures. The presented study therefore analyses the effect the presence of adult sutures and differing bone composition have on the EEG-FP and inverse problem (IP) solutions. Utilising a well-established head atlas, detailed head models were generated including compact and spongiform bone and adult sutures. The true skull conductivity was considered as inhomogeneous according to spongiform bone proportion and sutures. The EEG-FP and EEG-IP were solved and compared to results employing homogeneous skull models, with varying conductivities and omitting sutures, as well as using a hypothesised aging skull conductivity model. Significant localised FP errors, with relative error up to 85%, were revealed, particularly evident along suture lines and directly related to the proportion of spongiform bone. This remained evident at various ages. Similar EEG-IP inaccuracies were found, with the largest (maximum 4.14 cm) across suture lines. It is concluded that modelling the skull as an inhomogeneous layer that varies according to spongiform bone proportion and includes differing suture conductivity is imperative for accurate EEG-FP and source localisation calculations. Their omission can result in significant errors, relevant for EEG research and clinical diagnosis.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3222
Author(s):  
Jiaxuan Zheng ◽  
Siyi An ◽  
Yongjun Jian

Here, space electroosmotic thrusters in a rigid nanochannel with high wall zeta potentials are investigated numerically, for the first time, considering the effect of finite size of the ionic species. The effect, which is called a steric effect, is often neglected in research about micro/nano thrusters. However, it has vital influences on the electric potential and flow velocity in electric double layers, so that the thruster performances generated by the fluid motion are further affected. These performances, including thrust, specific impulse, thruster efficiency, and the thrust-to-power ratio, are described by using numerical algorithms, after obtaining the electric potential and velocity distributions under high wall zeta potentials ranging from −25.7 mV to −128.5 mV. As expected, the zeta potential can promote the development of thruster performances so as to satisfy the requirement of space missions. Moreover, for real situation with consideration of the steric effect, the thruster thrust and efficiency significantly decrease to 5–30 micro Newtons and 80–90%, respectively, but the thrust-to-power ratio is opposite, and expends a short specific impulse of about 50–110 s.


2021 ◽  
pp. 105973
Author(s):  
Khan M.D. Golam Rabbani ◽  
Md Jafrul Islam ◽  
Alexandre O. Fierro ◽  
Edward R. Mansell ◽  
Pappu Paul

Sign in / Sign up

Export Citation Format

Share Document