scholarly journals High ion-conducting solid polymer electrolytes based on blending hybrids derived from monoamine and diamine polyethers for lithium solid-state batteries

RSC Advances ◽  
2017 ◽  
Vol 7 (33) ◽  
pp. 20373-20383 ◽  
Author(s):  
Ta-Ming Liu ◽  
Diganta Saikia ◽  
Sze-Yuan Ho ◽  
Ming-Chou Chen ◽  
Hsien-Ming Kao

The blended hybrid solid polymer electrolyte possessed a high ionic conductivity value of 1.2 × 10−4 S cm−1 at 30 °C.

2015 ◽  
Vol 6 (7) ◽  
pp. 1052-1055 ◽  
Author(s):  
Suting Yan ◽  
Jianda Xie ◽  
Qingshi Wu ◽  
Shiming Zhou ◽  
Anqi Qu ◽  
...  

A solid polymer electrolyte fabricated using ion containing microgels manifests high ionic conductivity for potential use in lithium batteries.


2021 ◽  
Author(s):  
Zongjie Sun ◽  
Kai Xi ◽  
Jing Chen ◽  
Amor Abdelkader ◽  
Mengyang Li ◽  
...  

Abstract The non-reactive anion migration deteriorates the limited ionic conductivity of the solid polymer electrolytes (SPEs) and accelerates solid-state batteries failure. Here, we introduce an integrated approach in which polyvinyl ferrocene (PVF) cathode encourage anions and Li+ to act as effective carriers simultaneously. The concentration polarization and poor rate performance, caused by insufficient effective carriers, were addressed by the participation of anions in electrode reaction. Specifically, the PVF|Li battery matched with unmodified SPE (PEO-LiTFSI) showed 107 mAh g− 1 initial capacity at 100 µA cm− 2 and maintained 70% retention for more than 2800 cycles at 300 µA cm− 2 and 60°C. Moreover, the slight capacity decrease at 1000 µA cm− 2 and the successful batteries operation at minimal ionic conductivity (8.13×10− 6 S cm− 1) show that the current carrying capacity of SPEs was greatly improved without complex design. This strategy weakens the strict requirements for ion conductance and interface engineering of SPEs, and provides an efficient scenario for constructing advanced polymer-based all-solid-state batteries.


Nano Letters ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 3066-3073 ◽  
Author(s):  
Jinqiu Zhou ◽  
Tao Qian ◽  
Jie Liu ◽  
Mengfan Wang ◽  
Li Zhang ◽  
...  

2021 ◽  
Author(s):  
Chandni Devi ◽  
Jnaneswari Gellanki ◽  
Håkan Pettersson ◽  
Sandeep Kumar

Abstract Solid-state sodium ion batteries are frequently referred to as the most promising technology for future energy storage applications. However, developing a solid electrolyte with high ionic conductivity and a wide electrochemical stability window, remains a major challenge. Although solid-polymer electrolytes have attracted great interest due to their low cost, low density and very good processability, they generally have significantly lower ionic conductivity and poor mechanical strength. Here, we report on the development of a low-cost solid polymer electrolyte comprised of poly(ethylene oxide), poly(vinylpyrrolidone) and sodium hexafluorophosphate, mixed with indium arsenide nanowires. We show that the addition of 1.0 percent by weight of nanowires increases the sodium ion conductivity in the polymer to 1.50 × 10-4 Scm−1 at 40° C. This is the highest reported conductivity for any solid polymer electrolyte to date. In order to explain this remarkable characteristic, we propose a new transport model where sodium ions hop between close-spaced defect sites present on the surface of the nanowires, forming an effective complex conductive percolation network. Our work represents a significant advance in the development of novel solid polymer electrolytes with embedded ultrafast 1D percolation networks for next generations of low-cost, high-performance batteries with excellent energy storage capabilities.


2021 ◽  
Vol 8 ◽  
Author(s):  
Quoc Hung Nguyen ◽  
Van Tung Luu ◽  
Hoang Long Nguyen ◽  
Young-Woo Lee ◽  
Younghyun Cho ◽  
...  

All-solid-state batteries have gained significant attention as promising candidates to replace liquid electrolytes in lithium-ion batteries for high safety, energy storage performance, and stability under elevated temperature conditions. However, the low ionic conductivity and unsuitability of lithium metal in solid polymer electrolytes is a critical problem. To resolve this, we used a cubic garnet oxide electrolyte (Li7La3Zr2O12 – LLZO) and ionic liquid in combination with a polymer electrolyte to produce a composite electrolyte membrane. By applying a solid polymer electrolyte on symmetric stainless steel, the composite electrolyte membrane shows high ionic conductivity at elevated temperatures. The effect of LLZO in suppressing lithium dendrite growth within the composite electrolyte was confirmed through symmetric lithium stripping/plating tests under various current densities showing small polarization voltages. The full cell with lithium iron phosphate as the cathode active material achieved a highest specific capacity of 137.4 mAh g−1 and a high capacity retention of 98.47% after 100 cycles at a current density of 50 mA g−1 and a temperature of 60°C. Moreover, the specific discharge capacities were 137 and 100.8 mAh g−1 at current densities of 100 and 200 mA g−1, respectively. This research highlights the capability of solid polymer electrolytes to suppress the evolution of lithium dendrites and enhance the performance of all-solid-state batteries.


2020 ◽  
Vol 28 (8) ◽  
pp. 739-750
Author(s):  
Pazhaniswamy Sivaraj ◽  
Karuthedath Parameswaran Abhilash ◽  
Balakrishnan Nalini ◽  
Pandurangam Perumal ◽  
Kalimuthu Somasundaram ◽  
...  

2019 ◽  
Vol 7 (34) ◽  
pp. 19970-19976 ◽  
Author(s):  
Cheng Ma ◽  
Yiming Feng ◽  
Fangzhou Xing ◽  
Lin Zhou ◽  
Ying Yang ◽  
...  

A borate decorated anion-immobilized solid polymer electrolyte effectively integrates high ionic conductivity, high Li+ transference number and reasonably mechanical integrity, enabling long-term cycling stability for dendrite-free lithium metal batteries.


2020 ◽  
Vol MA2020-01 (2) ◽  
pp. 250-250
Author(s):  
Lamartine Meda ◽  
Gaind P. Pandey ◽  
Jere A. Williams ◽  
Arielle Lebean ◽  
Asha Ain Abiade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document