solid polymer electrolytes
Recently Published Documents


TOTAL DOCUMENTS

966
(FIVE YEARS 316)

H-INDEX

61
(FIVE YEARS 15)

2022 ◽  
pp. 1-12
Author(s):  
Nastran Khodabandehloo ◽  
Kosar Mozaffari ◽  
Liping Liu ◽  
Pradeep Sharma

Abstract Electrolyte in a rechargeable Li-ion battery plays a critical role in determining its capacity and efficiency. While the typically used electrolytes in Li-ion batteries are liquid, soft solid electrolytes are being increasingly explored as an alternative due to their advantages in terms of increased stability, safety and potential applications in the context of flexible and stretchable electronics. However, ionic conductivity of solid polymer electrolytes is significantly lower compared to liquid electrolytes. In a recent work, we developed a theoretical framework to model the coupled deformation, electrostatics and diffusion in heterogeneous electrolytes and also established a simple homogenization approach for the design of microstructures to enhance ionic conductivity of composite solid electrolytes. Guided by the insights from the theoretical framework, in this paper, we ex- amine specific microstructures that can potentially yield significant improvement in the effective ionic conductivity. We numerically implement our theory in the open source general purpose finite element package FEniCS to solve the governing equations and present numerical solutions and insights on the effect of microstructure on the enhancement of ionic conductivity. Specifically, we investigate the effect of shape by considering ellipsoidal inclusions. We also propose an easily manufacturable microstructure that increases the ionic conductivity of the composite electrolyte by forty times, simply by the addition of dielectric columns parallel to the solid electrolyte phase.


Author(s):  
Rassmus Andersson ◽  
Guiomar Hernández ◽  
Jennifer See ◽  
Tony D. Flaim ◽  
Daniel Brandell ◽  
...  

2022 ◽  
Vol 1048 ◽  
pp. 101-109
Author(s):  
Suresh Sripada ◽  
M. Chandrashekhar Reddy ◽  
T. Sreekanth ◽  
Rajesh Siripuram ◽  
K. Venkateshwarlu

Solid polymer electrolyte films made with potassium doped Polyethylene oxide using ZrO2 as nanofiller (70PEO-30KBF4-x ZrO2 where x = 1, 2.5, 5, 7.5, & 10 wt% ­­) were prepared by solution casting technique. Optical and thermal properties of polymer electrolyte films were studied by using Optical absorption and DSC techniques. From Optical absorption spectra, it is observed that fundamental absorption edge is shifted towards the higher wavelength side (range 259- 297 nm) with increase of nano filler (ZrO­2) concentration (1-10 wt %). Optical band gap for all electronic transitions (p=1/2, 2, 2/3 and 1/3) are found to be increased as incorporation of nano filler (ZrO2) which confirms the structural rearrangements takes place in polymer electrolyte films. Optical band gap for indirect allowed transitions (p=1/2) are found to be in the range of 1.93-3.34eV. Decrease in Urbach energy (4.8eV- 1.4eV) is associated with decrease in defect formation in host polymeric matrix (PEO-KBF4) as a result of embedded nano filler (ZrO2). DSC spectra analysis of polymer electrolytes has showed melting temperatures in the range 63.63-73.71°C and highest crystallinity is found to be 85 % (10 wt % ZrO­2). Enthalpy values are elevated with increase in nanofiller composition (ZrO2) in the present polymer electrolyte films.Keywords: PEO based polymer electrolytes, Solid polymer electrolytes, Optical and Thermal studies.


2022 ◽  
pp. 43-57
Author(s):  
Md Enamul Hoque ◽  
Zayed Bin Zakir Shawon ◽  
Dilshat Rubia Dola ◽  
Abdullah Alamin ◽  
Abu Bakkar Siddique Samrat ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 170
Author(s):  
Balen K. Faris ◽  
Ary A. Hassan ◽  
Shujahadeen B. Aziz ◽  
Mohamad A. Brza ◽  
Aziz M. Abdullah ◽  
...  

The polymer electrolyte system of methylcellulose (MC) doped with various sodium bromide (NaBr) salt concentrations is prepared in this study using the solution cast technique. FTIR and XRD were used to identify the structural changes in solid films. Sharp crystalline peaks appeared at the XRD pattern at 40 and 50 wt.% of NaBr salt. The electrical impedance spectroscopy (EIS) study illustrates that the loading of NaBr increases the electrolyte conductivity at room temperature. The DC conductivity of 6.71 × 10−6 S/cm is obtained for the highest conducting electrolyte. The EIS data are fitted with the electrical equivalent circuit (EEC) to determine the impedance parameters of each film. The EEC modeling helps determine the circuit elements, which is decisive from the engineering perspective. The DC conductivity tendency is further established by dielectric analysis. The EIS spectra analysis shows a decrease in bulk resistance, demonstrating free ion carriers and conductivity boost. The dielectric property and relaxation time confirmed the non-Debye behavior of the electrolyte system. An incomplete semicircle further confirms this behavior model in the Argand plot. The distribution of relaxation times is related to the presence of conducting ions in an amorphous structure. Dielectric properties are improved with the addition of NaBr salt. A high value of a dielectric constant is seen at the low frequency region.


Sign in / Sign up

Export Citation Format

Share Document