scholarly journals Efficiency and mechanisms of rhodamine B degradation in Fenton-like systems based on zero-valent iron

RSC Advances ◽  
2020 ◽  
Vol 10 (48) ◽  
pp. 28509-28515
Author(s):  
Liping Liang ◽  
Liubiao Cheng ◽  
Yuting Zhang ◽  
Qian Wang ◽  
Qian Wu ◽  
...  

Based on the Fe0/H2O2 heterogeneous Fenton system, the degradation of rhodamine B (RhB, an organic dye pollutant) was researched in this paper.

2016 ◽  
Vol 73 (11) ◽  
pp. 2815-2823 ◽  
Author(s):  
Yiming Zha ◽  
Ziqing Zhou ◽  
Haibo He ◽  
Tianlin Wang ◽  
Liqiang Luo

Nanoscale zero-valent iron (nZVI) incorporated with nanomagnetic diatomite (DE) composite material was prepared for catalytic degradation of methylene blue (MB) in heterogeneous Fenton system. The material was constructed by two facile steps: Fe3O4 magnetic nanoparticles were supported on DE by chemical co-precipitation method, after which nZVI was incorporated into magnetic DE by liquid-phase chemical reduction strategy. The as-prepared catalyst was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, magnetic properties measurement and nitrogen adsorption–desorption isotherm measurement. The novel nZVI@Fe3O4-diatomite nanocomposites showed a distinct catalytic activity and a desirable effect for degradation of MB. MB could be completely decolorized within 8 min and the removal efficiency of total organic carbon could reach to 90% after reaction for 1 h.


Chemosphere ◽  
2019 ◽  
Vol 228 ◽  
pp. 412-417 ◽  
Author(s):  
Yixiong Pang ◽  
Yang Ruan ◽  
Yong Feng ◽  
Zenghui Diao ◽  
Kaimin Shih ◽  
...  

Author(s):  
Rui-Xia Yang ◽  
Qiao-Hong Peng ◽  
Bing Yu ◽  
You-Qing Shen ◽  
Hai-Lin Cong

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Bing Li ◽  
Yongchun Dong ◽  
Zhizhong Ding ◽  
Yiming Xu ◽  
Chi Zou

Cu-Fe bimetallic grafted polytetrafluoroethylene (PTFE) fiber complexes were prepared and optimized as the novel heterogeneous Fenton catalysts for the degradation of reactive dyes under UV irradiation. Cotton fabrics were dyed with three reactive dyes, namely, Reactive Red 195, Reactive Yellow 145, and Reactive Blue 222, in tap fresh water using exhaustion process. The spent dyeing effluents were then collected and degraded with the optimized Cu-Fe bimetallic grafted PTFE fiber complex/H2O2system. The treated dyeing effluents were characterized and reused for the dyeing of cotton fabrics through the same process. The effect of reuse process number on quality of the dyed cotton fabrics was examined. The results indicated that the Cu-Fe bimetallic modified PTFE fiber complex with a Cu/Fe molar ratio of 2.87 was found to be the most effective fibrous catalyst, which enhanced complete decolorization of the treated dyeing effluents with H2O2in 4 h. However, the TOC removal for the treated dyeing effluents was below 80%. The dyeing quality was not affected for three successive cycles. The increase in residual TOC value influences fourth dyeing cycle. Further TOC reduction of the treated effluents is needed for its repeated reuse in more than three dyeing cycles.


Sign in / Sign up

Export Citation Format

Share Document